IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v424y2015icp25-33.html
   My bibliography  Save this article

Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions

Author

Listed:
  • Mali, P.
  • Sarkar, S.
  • Ghosh, S.
  • Mukhopadhyay, A.
  • Singh, G.

Abstract

The detrended fluctuation analysis (DFA) and the multifractal DFA (MF-DFA) techniques are employed to characterize the pseudorapidity (η) distribution of charged mesons produced in 28Si+Ag/Br interaction at 14.5 GeV/nucleon and 32S+Ag/Br interaction at 200 GeV/nucleon. Various multifractal parameters are calculated and compared with a Monte-Carlo simulation based on the ultra-relativistic quantum molecular dynamics (UrQMD) model. The results of this analysis show that the single particle distributions in both experiments and in their respective UrQMD simulations are multifractal in nature. The differences between the experiment and corresponding simulation however, are not always very significant. But the present results are significantly different from those obtained by using other conventional methods of multifractal analysis. The observations also indicate that the detrended multifractal analysis might be an efficient tool for characterizing the multiparticle emission data, but the method requires some improvement so that it can differentiate between the non-statistical signal and the statistical noise.

Suggested Citation

  • Mali, P. & Sarkar, S. & Ghosh, S. & Mukhopadhyay, A. & Singh, G., 2015. "Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 25-33.
  • Handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:25-33
    DOI: 10.1016/j.physa.2014.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010796
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.12.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    2. Mali, Provash & Mukhopadhyay, Amitabha, 2014. "Multifractal characterization of gold market: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 361-372.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    4. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    5. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    6. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mali, P. & Manna, S.K. & Haldar, P.K. & Mukhopadhyay, A. & Singh, G., 2017. "Detrended analysis of shower track distribution in nucleus-nucleus interactions at CERN SPS energy," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 86-94.
    2. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
    3. Alvarez-Ramirez, J. & Rodriguez, E., 2018. "AR(p)-based detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 49-57.
    4. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    5. Mali, Provash & Mukhopadhyay, Amitabha & Singh, Gurmukh, 2016. "Multifractal detrended moving average analysis of particle density functions in relativistic nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 323-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    3. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    4. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    5. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    6. Benbachir, Saâd & El Alaoui, Marwane, 2011. "A Multifractal Detrended Fluctuation Analysis of the Moroccan Stock Exchange," MPRA Paper 49003, University Library of Munich, Germany.
    7. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    9. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    11. Lee, Minhyuk & Song, Jae Wook & Park, Ji Hwan & Chang, Woojin, 2017. "Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 28-38.
    12. El Alaoui, Marwane, 2017. "Price–volume multifractal analysis of the Moroccan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 473-485.
    13. Zhongjun Wang & Mengye Sun & A. M. Elsawah, 2020. "Improving MF-DFA model with applications in precious metals market," Papers 2006.15214, arXiv.org.
    14. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    15. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2023. "Price efficiency of the foreign exchange rates of BRICS countries: A comparative analysis," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    16. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    17. Li, Zhihui & Lu, Xinsheng, 2012. "Cross-correlations between agricultural commodity futures markets in the US and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3930-3941.
    18. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2021. "Exchange rate regimes and price efficiency: Empirical examination of the impact of financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    19. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    20. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:25-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.