IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v447y2016icp467-481.html
   My bibliography  Save this article

Modeling diffusive transport with a fractional derivative without singular kernel

Author

Listed:
  • Gómez-Aguilar, J.F.
  • López-López, M.G.
  • Alvarado-Martínez, V.M.
  • Reyes-Reyes, J.
  • Adam-Medina, M.

Abstract

In this paper we present an alternative representation of the diffusion equation and the diffusion–advection equation using the fractional calculus approach, the spatial-time derivatives are approximated using the fractional definition recently introduced by Caputo and Fabrizio in the range β,γ∈(0;2] for the space and time domain respectively. In this representation two auxiliary parameters σx and σt are introduced, these parameters related to equation results in a fractal space–time geometry provide an entire new family of solutions for the diffusion processes. The numerical results showed different behaviors when compared with classical model solutions. In the range β,γ∈(0;1), the concentration exhibits the non-Markovian Lévy flights and the subdiffusion phenomena; when β=γ=1 the classical case is recovered; when β,γ∈(1;2] the concentration exhibits the Markovian Lévy flights and the superdiffusion phenomena; finally when β=γ=2 the concentration is anomalous dispersive and we found ballistic diffusion.

Suggested Citation

  • Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Reyes-Reyes, J. & Adam-Medina, M., 2016. "Modeling diffusive transport with a fractional derivative without singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 467-481.
  • Handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:467-481
    DOI: 10.1016/j.physa.2015.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115010948
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    2. Costa, F.S. & Oliveira, D.S. & Rodrigues, F.G. & de Oliveira, E.C., 2019. "The fractional space–time radial diffusion equation in terms of the Fox’s H-function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 403-418.
    3. Shuai Yang & Qing Wei & Lu An, 2022. "Fractional Advection Diffusion Models for Radionuclide Migration in Multiple Barriers System of Deep Geological Repository," Mathematics, MDPI, vol. 10(14), pages 1-7, July.
    4. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    5. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    6. Owolabi, Kolade M., 2017. "Mathematical modelling and analysis of two-component system with Caputo fractional derivative order," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 544-554.
    7. Liu, Zhengguang & Cheng, Aijie & Li, Xiaoli, 2017. "A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 361-374.
    8. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    9. Abdulhameed, M. & Vieru, D. & Roslan, R., 2017. "Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 233-252.
    10. Habibirad, Ali & Azin, Hadis & Hesameddini, Esmail, 2023. "A capable numerical meshless scheme for solving distributed order time-fractional reaction–diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Owolabi, Kolade M., 2018. "Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 127-134.
    12. Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
    13. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    14. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    15. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    16. Gómez-Aguilar, J.F., 2017. "Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 179-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:467-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.