IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v446y2016icp158-170.html
   My bibliography  Save this article

Dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties

Author

Listed:
  • Wu, Jie
  • Li, Ya-Dong

Abstract

The dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties is numerically studied in this work. After being released or horizontally thrown out, a two-dimensional droplet can fall freely under gravity. The substrate, which is below the droplet, is either hydrophilic/hydrophobic or inhomogeneous. To conduct numerical simulations, a hybrid method is adopted, in which the flow field is solved by using the lattice Boltzmann method and the interface is captured by solving the Cahn–Hilliard equation directly. Given a fixed distance between the droplet and the substrate (H∗), the effects of Bond number (Bo), Weber number (We), and surface property on the performance of droplet impingement are investigated in detail. With the increase of Bond number, the surface coverage area of a static droplet also increases. A hydrophilic surface or an inhomogeneous surface with small advancing/receding angle difference can lead to the breakup of droplet rim due to the bubble entrapment. Moreover, dependent on the Weber number and the surface property, the leading edge rim of a throwing droplet developing on an inhomogeneous surface may break up before or after it contacts the substrate. As a result, compared to the case of static droplet, the surface coverage area will be reduced due to the diffusion of small droplet segment.

Suggested Citation

  • Wu, Jie & Li, Ya-Dong, 2016. "Dynamic performance of a static or throwing droplet impact onto a solid substrate with different properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 158-170.
  • Handle: RePEc:eee:phsmap:v:446:y:2016:i:c:p:158-170
    DOI: 10.1016/j.physa.2015.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115010195
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Bird & Rajeev Dhiman & Hyuk-Min Kwon & Kripa K. Varanasi, 2013. "Reducing the contact time of a bouncing drop," Nature, Nature, vol. 503(7476), pages 385-388, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Yan & Yan Li, 2018. "A Comprehensive Study of Dynamic and Heat Transfer Characteristics of Droplet Impact on Micro-Scale Rectangular Grooved Surface," Energies, MDPI, vol. 11(6), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    3. Shengteng Zhao & Zhichao Ma & Mingkai Song & Libo Tan & Hongwei Zhao & Luquan Ren, 2023. "Golden section criterion to achieve droplet trampoline effect on metal-based superhydrophobic surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yanhong Li & Wenchang Zhao & Ying Zhou & Shuxian Tang & Shiyu Wang & Yutong Zheng & Zuankai Wang & Pingan Zhu, 2024. "Ultrafast bounce of particle-laden droplets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. An Li & Huizeng Li & Sijia Lyu & Zhipeng Zhao & Luanluan Xue & Zheng Li & Kaixuan Li & Mingzhu Li & Chao Sun & Yanlin Song, 2023. "Tailoring vapor film beneath a Leidenfrost drop," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Ying Zhou & Chenguang Zhang & Wenchang Zhao & Shiyu Wang & Pingan Zhu, 2023. "Suppression of hollow droplet rebound on super-repellent surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jun Li & Mingxin He & Huajun Cui & Peiyi Lin & Yingyi Chen & Guangxin Ling & Guangwen Huang & Han Fu, 2022. "Characterizing Droplet Retention in Fruit Tree Canopies for Air-Assisted Spraying," Agriculture, MDPI, vol. 12(8), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:446:y:2016:i:c:p:158-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.