IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v415y2014icp449-462.html
   My bibliography  Save this article

Evolutionary model of stock markets

Author

Listed:
  • Kaldasch, Joachim

Abstract

The paper presents an evolutionary economic model for the price evolution of stocks. Treating a stock market as a self-organized system governed by a fast purchase process and slow variations of demand and supply the model suggests that the short term price distribution has the form a logistic (Laplace) distribution. The long term return can be described by Laplace–Gaussian mixture distributions. The long term mean price evolution is governed by a Walrus equation, which can be transformed into a replicator equation. This allows quantifying the evolutionary price competition between stocks. The theory suggests that stock prices scaled by the price over all stocks can be used to investigate long-term trends in a Fisher–Pry plot. The price competition that follows from the model is illustrated by examining the empirical long-term price trends of two stocks.

Suggested Citation

  • Kaldasch, Joachim, 2014. "Evolutionary model of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 449-462.
  • Handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:449-462
    DOI: 10.1016/j.physa.2014.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007158
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alessandro Andreoli & Francesco Caravenna & Paolo Dai Pra & Gustavo Posta, 2010. "Scaling and multiscaling in financial series: a simple model," Papers 1006.0155, arXiv.org, revised Apr 2012.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    4. B. Podobnik & D. Horvatic & A. M. Petersen & M. Njavro & H. E. Stanley, 2010. "Common scaling behavior in finance and macroeconomics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 76(4), pages 487-490, August.
    5. Linden, Mikael, 2001. "A Model for Stock Return Distribution," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(2), pages 159-169, April.
    6. Engle, Robert F, 1983. "Estimates of the Variance of U.S. Inflation Based upon the ARCH Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 15(3), pages 286-301, August.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    9. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    10. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    11. Gilles O. Zumbach & Michel M. Dacorogna & Jørgen L. Olsen & Richard B. Olsen, 2000. "Measuring Shock In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 347-355.
    12. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2005. "Modeling and predicting market risk with Laplace-Gaussian mixture distributions," CFS Working Paper Series 2005/11, Center for Financial Studies (CFS).
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    14. Daniel B. Nelson, 1994. "Asymptotically Optimal Smoothing with ARCH Models," NBER Technical Working Papers 0161, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaldasch, Joachim, 2015. "The Product Life Cycle of Durable Goods," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(2), pages 1-17.
    2. Kaldasch, Joachim, 2015. "Dynamic Model of the Price Dispersion of Homogeneous Goods," MPRA Paper 64723, University Library of Munich, Germany.
    3. Kaldasch, Joachim, 2015. "Dynamic Model of Markets of Homogenous Non-Durables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(3), pages 1-12.
    4. Kaldasch, Joachim, 2015. "Dynamic Model of Markets of Successive Product Generations," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    2. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
    3. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.
    4. Hanabusa, Kunihiro, 2017. "Japan’s quantitative monetary easing policy: Effect on the level and volatility of yield spreads," Journal of Asian Economics, Elsevier, vol. 53(C), pages 56-66.
    5. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    6. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    7. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    8. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    9. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    10. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    11. Lorenzo, Fernando, 1997. "Estimación de la volatilidad de la inflación en presencia de observaciones atípicas y heteroscedasticidad condicional," DES - Documentos de Trabajo. Estadística y Econometría. DS 3648, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    13. Lee, Jim, 2006. "The impact of federal funds target changes on interest rate volatility," International Review of Economics & Finance, Elsevier, vol. 15(2), pages 241-259.
    14. Naqi Shah, Sadia & Qayyum, Abdul, 2016. "Analyse Risk-Return Paradox: Evidence from Electricity Sector of Pakistan," MPRA Paper 68783, University Library of Munich, Germany.
    15. Carmen PINTILESCU & Mircea ASANDULUI & Elena-Daniela VIORICA & Danut-Vasile JEMNA, 2016. "Investigation On The Causal Relationship Between Inflation, Output Growth And Their Uncertainties In Romania," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 71-89, June.
    16. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    18. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Modelling S&P 100 volatility: The information content of stock returns," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1665-1679, September.
    19. Chih-Chuan Yeh & Kuan-Min Wang & Yu-Bo Suen, 2011. "A quantile framework for analysing the links between inflation uncertainty and inflation dynamics across countries," Applied Economics, Taylor & Francis Journals, vol. 43(20), pages 2593-2602.
    20. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:449-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.