IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp33-42.html
   My bibliography  Save this article

Bayesian non-parametric approaches to reconstructing oscillatory systems and the Nyquist limit

Author

Listed:
  • Žurauskienė, Justina
  • Kirk, Paul
  • Thorne, Thomas
  • Stumpf, Michael P.H.

Abstract

Reconstructing continuous signals from discrete time-points is a challenging inverse problem encountered in many scientific and engineering applications. For oscillatory signals classical results due to Nyquist set the limit below which it becomes impossible to reliably reconstruct the oscillation dynamics. Here we revisit this problem for vector-valued outputs and apply Bayesian non-parametric approaches in order to solve the function estimation problem. The main aim of the current paper is to map how we can use of correlations among different outputs to reconstruct signals at a sampling rate that lies below the Nyquist rate. We show that it is possible to use multiple-output Gaussian processes to capture dependences between outputs which facilitate reconstruction of signals in situation where conventional Gaussian processes (i.e. this aimed at describing scalar signals) fail, and we delineate the phase and frequency dependence of the reliability of this type of approach. In addition to simple toy-models we also consider the dynamics of the tumour suppressor gene p53, which exhibits oscillations under physiological conditions, and which can be reconstructed more reliably in our new framework.

Suggested Citation

  • Žurauskienė, Justina & Kirk, Paul & Thorne, Thomas & Stumpf, Michael P.H., 2014. "Bayesian non-parametric approaches to reconstructing oscillatory systems and the Nyquist limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 33-42.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:33-42
    DOI: 10.1016/j.physa.2014.03.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002714
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Silk & Paul D.W. Kirk & Chris P. Barnes & Tina Toni & Anna Rose & Simon Moon & Margaret J. Dallman & Michael P.H. Stumpf, 2011. "Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    2. Filippi Sarah & Barnes Chris P. & Cornebise Julien & Stumpf Michael P.H., 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:33-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.