IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v400y2014icp124-138.html
   My bibliography  Save this article

Moral foundations in an interacting neural networks society: A statistical mechanics analysis

Author

Listed:
  • Vicente, R.
  • Susemihl, A.
  • Jericó, J.P.
  • Caticha, N.

Abstract

The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.

Suggested Citation

  • Vicente, R. & Susemihl, A. & Jericó, J.P. & Caticha, N., 2014. "Moral foundations in an interacting neural networks society: A statistical mechanics analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 124-138.
  • Handle: RePEc:eee:phsmap:v:400:y:2014:i:c:p:124-138
    DOI: 10.1016/j.physa.2014.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711400017X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nestor Caticha & Renato Vicente, 2011. "Agent-Based Social Psychology: From Neurocognitive Processes To Social Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 711-731.
    2. Christian Borghesi & Jean-Philippe Bouchaud, 2007. "Of songs and men: a model for multiple choice with herding," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 557-568, August.
    3. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    4. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    5. Serge Galam, 2007. "From 2000 Bush–Gore to 2006 Italian elections: voting at fifty-fifty and the contrarian effect," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 579-589, August.
    6. Miśkiewicz, Janusz & Ausloos, M., 2007. "Delayed information flow effect in economy systems. An ACP model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 179-186.
    7. A. O. Sousa & T. Yu-Song & M. Ausloos, 2008. "Effects of agents' mobility on opinion spreading in Sznajd model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(1), pages 115-124, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javarone, Marco Alberto, 2014. "Social influences in opinion dynamics: The role of conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 19-30.
    2. Ding, Fei & Liu, Yun & Shen, Bo & Si, Xia-Meng, 2010. "An evolutionary game theory model of binary opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1745-1752.
    3. Gimenez, M. Cecilia & Paz García, Ana Pamela & Burgos Paci, Maxi A. & Reinaudi, Luis, 2016. "Range of interaction in an opinion evolution model of ideological self-positioning: Contagion, hesitance and polarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 320-330.
    4. Rodriguez Lucatero, C. & Schaum, A. & Alarcon Ramos, L. & Bernal-Jaquez, R., 2014. "Message survival and decision dynamics in a class of reactive complex systems subject to external fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 338-351.
    5. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    6. Mirta B. Gordon & Jean-Pierre Nadal & Denis Phan & Viktoriya Semeshenko, 2012. "Entanglement between Demand and Supply in Markets with Bandwagon Goods," Papers 1209.1321, arXiv.org, revised Dec 2012.
    7. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    8. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    9. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    10. Jiashun Jin & Zheng Tracy Ke & Shengming Luo, 2022. "Improvements on SCORE, Especially for Weak Signals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 127-162, June.
    11. Coco Krumme & Manuel Cebrian & Galen Pickard & Sandy Pentland, 2012. "Quantifying Social Influence in an Online Cultural Market," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-6, May.
    12. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Javarone, Marco Alberto, 2016. "An evolutionary strategy based on partial imitation for solving optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 262-269.
    14. Saxena, Rakhi & Kaur, Sharanjit & Bhatnagar, Vasudha, 2019. "Identifying similar networks using structural hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    16. Dornelas, Vivian & Ramos, Marlon & Anteneodo, Celia, 2018. "Impact of network randomness on multiple opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 197-207.
    17. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    18. Boschi, Gioia & Cammarota, Chiara & Kühn, Reimer, 2021. "Opinion dynamics with emergent collective memory: The impact of a long and heterogeneous news history," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    19. Cai, Zhongqi & Gerding, Enrico & Brede, Markus, 2023. "Accelerating convergence of inference in the inverse Ising problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    20. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:400:y:2014:i:c:p:124-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.