IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i4p628-638.html
   My bibliography  Save this article

Variational methods for time-dependent classical many-particle systems

Author

Listed:
  • Sereda, Yuriy V.
  • Ortoleva, Peter J.

Abstract

A variational method for the classical Liouville equation is introduced that facilitates the development of theories for non-equilibrium classical systems. The method is based on the introduction of a complex-valued auxiliary quantity Ψ that is related to the classical position-momentum probability density ρ via ρ=Ψ∗Ψ. A functional of Ψ is developed whose extrema imply that ρ satisfies the Liouville equation. Multiscale methods are used to develop trial functions to be optimized by the variational principle. The present variational principle with multiscale trial functions can capture both the microscopic and the coarse-grained descriptions, thereby yielding theories that account for the two way exchange of information across multiple scales in space and time. Equations of the Smoluchowski form for the coarse-grained state probability density are obtained. Constraints on the initial state of the N-particle probability density for which the aforementioned equation is closed and conserves probability are presented. The methodology has applicability to a wide range of systems including macromolecular assemblies, ionic liquids, and nanoparticles.

Suggested Citation

  • Sereda, Yuriy V. & Ortoleva, Peter J., 2013. "Variational methods for time-dependent classical many-particle systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 628-638.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:628-638
    DOI: 10.1016/j.physa.2012.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008850
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shreif, Z. & Ortoleva, P., 2009. "Multiscale derivation of an augmented Smoluchowski equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 593-600.
    2. Pankavich, S. & Shreif, Z. & Ortoleva, P., 2008. "Multiscaling for classical nanosystems: Derivation of Smoluchowski & Fokker–Planck equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4053-4069.
    3. Shea, Joan-Emma & Oppenheim, Irwin, 1998. "Fokker–Planck and non-linear hydrodynamic equations of an inelastic system of several Brownian particles in a non-equilibrium bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 265-294.
    4. Shea, Joan-Emma & Oppenheim, Irwin, 1997. "Fokker-Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 247(1), pages 417-443.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shreif, Z. & Ortoleva, P., 2009. "Multiscale derivation of an augmented Smoluchowski equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 593-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:628-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.