IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i16p4053-4069.html
   My bibliography  Save this article

Multiscaling for classical nanosystems: Derivation of Smoluchowski & Fokker–Planck equations

Author

Listed:
  • Pankavich, S.
  • Shreif, Z.
  • Ortoleva, P.

Abstract

Using multiscale analysis and methods of statistical physics, we show that a solution to the N-atom Liouville equation can be decomposed via an expansion in terms of a smallness parameter ϵ, wherein the long scale time behavior depends upon a reduced probability density that is a function of slow-evolving order parameters. This reduced probability density is shown to satisfy the Smoluchowski equation up to O(ϵ2) for a given range of initial conditions. Furthermore, under the additional assumption that the nanoparticle momentum evolves on a slow time scale, we show that this reduced probability density satisfies a Fokker–Planck equation up to O(ϵ2). This approach has applications to a broad range of problems in the nanosciences.

Suggested Citation

  • Pankavich, S. & Shreif, Z. & Ortoleva, P., 2008. "Multiscaling for classical nanosystems: Derivation of Smoluchowski & Fokker–Planck equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4053-4069.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4053-4069
    DOI: 10.1016/j.physa.2008.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108002914
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shreif, Z. & Ortoleva, P., 2009. "Multiscale derivation of an augmented Smoluchowski equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 593-600.
    2. Sereda, Yuriy V. & Ortoleva, Peter J., 2013. "Variational methods for time-dependent classical many-particle systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 628-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:16:p:4053-4069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.