IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i3p510-519.html
   My bibliography  Save this article

Load balanced diffusive capture process on homophilic scale-free networks

Author

Listed:
  • Telcs, András
  • Csernai, Márton
  • Gulyás, András

Abstract

Diffusive capture processes are known to be an effective method for information search on complex networks. The biased N lions–lamb model provides quick search time by attracting random walkers to high degree nodes, where most capture events take place. The price of the efficiency is extreme traffic concentration on top hubs. We propose traffic load balancing provided by type specific biased random walks. For that we introduce a multi-type scale-free graph generation model, which embeds homophily structure into the network by utilizing type dependent random walks. We show analytically and with simulations that by augmenting the biased random walk method with a simple type homophily rule, we can alleviate the traffic concentration on high degree nodes by spreading the load proportionally between hubs with different types of our generated multi-type scale-free topologies.

Suggested Citation

  • Telcs, András & Csernai, Márton & Gulyás, András, 2013. "Load balanced diffusive capture process on homophilic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 510-519.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:510-519
    DOI: 10.1016/j.physa.2012.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008527
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josep M. Pujol & Andreas Flache & Jordi Delgado & Ramon Sangüesa, 2005. "How Can Social Networks Ever Become Complex? Modelling the Emergence of Complex Networks from Local Social Exchanges," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-12.
    2. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    3. Lee, Sungmin & Yook, Soon-Hyung & Kim, Yup, 2007. "Diffusive capture processes for information search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 743-749.
    4. S. Condamin & O. Bénichou & V. Tejedor & R. Voituriez & J. Klafter, 2007. "First-passage times in complex scale-invariant media," Nature, Nature, vol. 450(7166), pages 77-80, November.
    5. Saramäki, Jari & Kaski, Kimmo, 2004. "Scale-free networks generated by random walkers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 80-86.
    6. Lynne Hamill & Nigel Gilbert, 2009. "Social Circles: A Simple Structure for Agent-Based Social Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-3.
    7. Firat, Aykut & Chatterjee, Sangit & Yilmaz, Mustafa, 2007. "Genetic clustering of social networks using random walks," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6285-6294, August.
    8. András Schubert & András Korn & András Telcs, 2009. "Hirsch-type indices for characterizing networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(2), pages 375-382, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Ausloos & Herbert Dawid & Ugo Merlone, 2015. "Spatial Interactions in Agent-Based Modeling," Dynamic Modeling and Econometrics in Economics and Finance, in: Pasquale Commendatore & Saime Kayam & Ingrid Kubin (ed.), Complexity and Geographical Economics, edition 127, pages 353-377, Springer.
    2. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    3. Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
    4. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    5. Georg Mueller, 2011. "Microsimulation of Virtual Encounters: A New Methodology for the Analysis of Socio-Cultural Cleavages," International Journal of Microsimulation, International Microsimulation Association, vol. 4(1), pages 21-34.
    6. András Schubert, 2015. "Rescaling the h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1647-1653, February.
    7. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    8. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    9. András Schubert, 2015. "X-centage: a Hirsch-inspired indicator for distributions of percentage-valued variables and its use for measuring heterodisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 307-313, January.
    10. Huang, Liang & Zheng, Yu, 2023. "Asymptotic formula on APL of fractal evolving networks generated by Durer Pentagon," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Bale, Catherine S.E. & McCullen, Nicholas J. & Foxon, Timothy J. & Rucklidge, Alastair M. & Gale, William F., 2013. "Harnessing social networks for promoting adoption of energy technologies in the domestic sector," Energy Policy, Elsevier, vol. 63(C), pages 833-844.
    12. Somayeh Koohborfardhaghighi & Jorn Altmann, 2016. "How Strategic Networking Impacts the Networking Outcome: A Complex Adaptive System Approach," TEMEP Discussion Papers 2016131, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2016.
    13. Albertini, Marco & Sage, Lucas & Scherer, Stefani, 2020. "Intergenerational contacts and Covid-19 spread: Omnipresent grannies or bowling together?," SocArXiv exym8, Center for Open Science.
    14. Shu-Heng Chen & Umberto Gostoli, 2017. "Coordination in the El Farol Bar problem: The role of social preferences and social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 59-93, April.
    15. Moore, Jack Murdoch & Small, Michael & Yan, Gang, 2021. "Inclusivity enhances robustness and efficiency of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    16. Wu, Jianshe & Li, Xiaoxiao & Jiao, Licheng & Wang, Xiaohua & Sun, Bo, 2013. "Minimum spanning trees for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2265-2277.
    17. Sinan Aral & Paramveer S. Dhillon, 2023. "What (Exactly) Is Novelty in Networks? Unpacking the Vision Advantages of Brokers, Bridges, and Weak Ties," Management Science, INFORMS, vol. 69(2), pages 1092-1115, February.
    18. Per Block & Marion Hoffman & Isabel J. Raabe & Jennifer Beam Dowd & Charles Rahal & Ridhi Kashyap & Melinda C. Mills, 2020. "Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world," Nature Human Behaviour, Nature, vol. 4(6), pages 588-596, June.
    19. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    20. N. Levernier & T. V. Mendes & O. Bénichou & R. Voituriez & T. Guérin, 2022. "Everlasting impact of initial perturbations on first-passage times of non-Markovian random walks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:510-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.