IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i3p468-473.html
   My bibliography  Save this article

Self-organized criticality and color vision: A guide to water–protein landscape evolution

Author

Listed:
  • Phillips, J.C.

Abstract

We focus here on the scaling properties of small interspecies differences between red cone opsin transmembrane proteins, using a hydropathic elastic roughening tool previously applied to the rhodopsin rod transmembrane proteins. This tool is based on a non-Euclidean hydropathic metric realistically rooted in the atomic coordinates of 5526 protein segments, which thereby encapsulates universal non-Euclidean long-range differential geometrical features of water films enveloping globular proteins in the Protein Data Bank. Whereas the rhodopsin blue rod water films are smoothest in humans, the red cone opsins’ water films are optimized for smoothness in cats and elephants, consistent with protein species landscapes that evolve differently in different contexts. We also analyze red cone opsins in the chromatophore-containing family of chameleons, snakes, zebrafish and goldfish, where short- and long-range (BLAST and hydropathic) amino acid (aa) correlations are found with values as large as 97%–99%. We use hydropathic aa optimization to estimate the maximum number Nmax of color shades that the human eye can discriminate, and obtain 106

Suggested Citation

  • Phillips, J.C., 2013. "Self-organized criticality and color vision: A guide to water–protein landscape evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 468-473.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:468-473
    DOI: 10.1016/j.physa.2012.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008795
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wallace, Matthew L. & Larivière, Vincent & Gingras, Yves, 2009. "Modeling a century of citation distributions," Journal of Informetrics, Elsevier, vol. 3(4), pages 296-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monteiro, R.L.S. & Fontoura, J.R.A. & Carneiro, T.K.G. & Moret, M.A. & Pereira, H.B.B., 2014. "Evolution based on chromosome affinity from a network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 276-283.
    2. Mauro, John C. & Diehl, Brett & Marcellin, Richard F. & Vaughn, Daniel J., 2018. "Workplace accidents and self-organized criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 284-289.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Albo, Borja & Bordons, María, 2011. "Articles vs. proceedings papers: Do they differ in research relevance and impact? A case study in the Library and Information Science field," Journal of Informetrics, Elsevier, vol. 5(3), pages 369-381.
    2. Shahzad, Murtuza & Alhoori, Hamed & Freedman, Reva & Rahman, Shaikh Abdul, 2022. "Quantifying the online long-term interest in research," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Liang, Liming & Zhong, Zhen & Rousseau, Ronald, 2015. "Uncited papers, uncited authors and uncited topics: A case study in library and information science," Journal of Informetrics, Elsevier, vol. 9(1), pages 50-58.
    4. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    5. Tol, Richard S.J., 2013. "The Matthew effect for cohorts of economists," Journal of Informetrics, Elsevier, vol. 7(2), pages 522-527.
    6. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    7. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    8. Thelwall, Mike & Sud, Pardeep, 2016. "National, disciplinary and temporal variations in the extent to which articles with more authors have more impact: Evidence from a geometric field normalised citation indicator," Journal of Informetrics, Elsevier, vol. 10(1), pages 48-61.
    9. Sangwal, Keshra, 2013. "Citation and impact factor distributions of scientific journals published in individual countries," Journal of Informetrics, Elsevier, vol. 7(2), pages 487-504.
    10. Roth, Camille & Wu, Jiang & Lozano, Sergi, 2012. "Assessing impact and quality from local dynamics of citation networks," Journal of Informetrics, Elsevier, vol. 6(1), pages 111-120.
    11. Wang, Jue & Zhang, Liwei, 2018. "Proximal advantage in knowledge diffusion: The time dimension," Journal of Informetrics, Elsevier, vol. 12(3), pages 858-867.
    12. Osterloh, Margit & Frey, Bruno S., 2020. "How to avoid borrowed plumes in academia," Research Policy, Elsevier, vol. 49(1).
    13. Sangwal, Keshra, 2014. "Distributions of citations of papers of individual authors publishing in different scientific disciplines: Application of Langmuir-type function," Journal of Informetrics, Elsevier, vol. 8(4), pages 972-984.
    14. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    15. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    16. Lachance, Christian & Larivière, Vincent, 2014. "On the citation lifecycle of papers with delayed recognition," Journal of Informetrics, Elsevier, vol. 8(4), pages 863-872.
    17. Phillips, J.C., 2015. "Phase transitions in the web of science," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 173-177.
    18. Sangwal, Keshra, 2013. "Comparison of different mathematical functions for the analysis of citation distribution of papers of individual authors," Journal of Informetrics, Elsevier, vol. 7(1), pages 36-49.
    19. Pan, Raj K. & Petersen, Alexander M. & Pammolli, Fabio & Fortunato, Santo, 2018. "The memory of science: Inflation, myopia, and the knowledge network," Journal of Informetrics, Elsevier, vol. 12(3), pages 656-678.
    20. Katchanov, Yurij L. & Markova, Yulia V. & Shmatko, Natalia A., 2023. "Uncited papers in the structure of scientific communication," Journal of Informetrics, Elsevier, vol. 17(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:3:p:468-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.