IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i3p463-470.html
   My bibliography  Save this article

Modelling of discrete-time SIS models with awareness interactions on degree-uncorrelated networks

Author

Listed:
  • Wu, Qingchu
  • Fu, Xinchu

Abstract

Many epidemic models ignored the impact of awareness on epidemics in a population, though it is not the case from the real viewpoints. In this paper, a discrete-time SIS model with awareness interactions on degree-uncorrelated networks is considered. We study three kinds of awareness, including local awareness and global awareness which are originated from the epidemic-dependent information, and individual awareness which is epidemic-independent and determined by the individual information. We demonstrate analytically that awareness of the epidemic-dependent information cannot change the epidemic threshold regardless of the global or local spreading information. In contrast, epidemic-independent awareness to individual information increases the epidemic threshold in finite scale-free networks, but cannot halt the absence of epidemic threshold in an infinite scale-free network. By numerical simulations, we find that local awareness has a stronger impact on epidemic prevalence than global awareness. Our findings explore the effects of various types of awareness on epidemic spreading and address their roles in the epidemic control.

Suggested Citation

  • Wu, Qingchu & Fu, Xinchu, 2011. "Modelling of discrete-time SIS models with awareness interactions on degree-uncorrelated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 463-470.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:3:p:463-470
    DOI: 10.1016/j.physa.2010.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110008435
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yong-Wang & Song, Yu-Rong & Jiang, Guo-Ping, 2013. "Time-varying human mobility patterns with metapopulation epidemic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4242-4251.
    2. Sanders, Johnathan & Noble, Benjamin & Van Gorder, Robert A. & Riggs, Cortney, 2012. "Mobility matrix evolution for an SIS epidemic patch model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6256-6267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:3:p:463-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.