IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i18p3120-3135.html
   My bibliography  Save this article

Replicating financial market dynamics with a simple self-organized critical lattice model

Author

Listed:
  • Dupoyet, B.
  • Fiebig, H.R.
  • Musgrove, D.P.

Abstract

We explore a simple lattice field model intended to describe statistical properties of high-frequency financial markets. The model is relevant in the cross-disciplinary area of econophysics. Its signature feature is the emergence of a self-organized critical state. This implies scale invariance of the model, without tuning parameters. Prominent results of our simulation are time series of gains, prices, volatility, and gains frequency distributions, which all compare favorably to features of historical market data. Applying a standard GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from historical NASDAQ data.

Suggested Citation

  • Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2011. "Replicating financial market dynamics with a simple self-organized critical lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3120-3135.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:18:p:3120-3135
    DOI: 10.1016/j.physa.2011.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111003116
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    3. Stauffer, Dietrich & Sornette, Didier, 1999. "Self-organized percolation model for stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 496-506.
    4. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    5. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    6. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    7. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2010. "Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 107-116.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Bartolozzi, M. & Leinweber, D.B. & Thomas, A.W., 2006. "Symbiosis in the Bak–Sneppen model for biological evolution with economic applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 499-508.
    12. Ausloos, Marcel & Clippe, Paulette & Pȩkalski, Andrzej, 2004. "Evolution of economic entities under heterogeneous political/environmental conditions within a Bak–Sneppen-like dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 394-402.
    13. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    2. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    3. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    4. Rudolf Fiebig & David Musgrove, 2014. "Testing for Detailed Balance in a Financial Market," Papers 1403.3584, arXiv.org.
    5. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    6. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    7. Fiebig, H.R. & Musgrove, D.P., 2015. "Testing for detailed balance in a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 26-33.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. B. Dupoyet & H. R. Fiebig & D. P. Musgrove, 2011. "Arbitrage-free Self-organizing Markets with GARCH Properties: Generating them in the Lab with a Lattice Model," Papers 1112.2379, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Dupoyet & H. R. Fiebig & D. P. Musgrove, 2010. "Replicating financial market dynamics with a simple self-organized critical lattice model," Papers 1010.4831, arXiv.org.
    2. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    3. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    4. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    5. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    6. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    7. Hwang, Eunju & Jeon, ChanHyeok, 2024. "Nonnegative GARCH-type models with conditional Gamma distributions and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    8. N. Antonakakis & J. Darby, 2013. "Forecasting volatility in developing countries' nominal exchange returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
    9. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    10. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    11. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    12. Shi, Yujie & Wang, Liming & Ke, Jian, 2021. "Does the US-China trade war affect co-movements between US and Chinese stock markets?," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
    14. Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
    15. Borgsen, Sina & Glaser, Markus, 2005. "Diversifikationseffekte durch small und mid caps? : Eine empirische Untersuchung basierend auf europäischen Aktienindizes," Papers 05-10, Sonderforschungsbreich 504.
    16. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    17. Borgsen, Sina & Glaser, Markus, 2005. "Diversifikationseffekte durch Small und Mid Caps?," Sonderforschungsbereich 504 Publications 05-10, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    18. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    19. Jawadi, Fredj & Jawadi, Nabila & Idi Cheffou, Abdoukarim, 2019. "A statistical analysis of uncertainty for conventional and ethical stock indexes," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 9-17.
    20. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:18:p:3120-3135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.