IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i21p4776-4784.html
   My bibliography  Save this article

Universal fluctuations of the AEX index

Author

Listed:
  • Gonçalves, Rui
  • Ferreira, Helena
  • Stollenwerk, Nico
  • Pinto, Alberto Adrego

Abstract

We compute the analytic expression of the probability distributions FAEX,+ and FAEX,− of the normalized positive and negative AEX (Netherlands) index daily returns r(t). Furthermore, we define the α re-scaled AEX daily index positive returns r(t)α and negative returns (−r(t))α, which we call, after normalization, the α positive fluctuations and α negative fluctuations. We use the Kolmogorov–Smirnov statistical test as a method to find the values of α that optimize the data collapse of the histogram of the α fluctuations with the Bramwell–Holdsworth–Pinton (BHP) probability density function. The optimal parameters that we found are α+=0.46 and α−=0.43. Since the BHP probability density function appears in several other dissimilar phenomena, our result reveals a universal feature of stock exchange markets.

Suggested Citation

  • Gonçalves, Rui & Ferreira, Helena & Stollenwerk, Nico & Pinto, Alberto Adrego, 2010. "Universal fluctuations of the AEX index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4776-4784.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:21:p:4776-4784
    DOI: 10.1016/j.physa.2010.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110005029
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barnhart, Scott W. & Giannetti, Antoine, 2009. "Negative earnings, positive earnings and stock return predictability: An empirical examination of market timing," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 70-86, January.
    2. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    3. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    4. Lillo, Fabrizio & Mantegna, Rosario N., 2001. "Ensemble properties of securities traded in the NASDAQ market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 161-167.
    5. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    6. Dahlstedt, Kajsa & Jensen, Henrik Jeldtoft, 2005. "Fluctuation spectrum and size scaling of river flow and level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 596-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    2. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    3. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    4. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    5. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    6. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
    7. Wen-Juan Xu & Chen-Yang Zhong & Fei Ren & Tian Qiu & Rong-Da Chen & Yun-Xin He & Li-Xin Zhong, 2020. "Evolutionary dynamics in financial markets with heterogeneities in strategies and risk tolerance," Papers 2010.08962, arXiv.org.
    8. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    11. Aoki, Masanao, 2002. "Open models of share markets with two dominant types of participants," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 199-216, October.
    12. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    13. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    14. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    15. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    16. Nuyts, Jean & Platten, Isabelle, 2001. "Phenomenology of the term structure of interest rates with Padé Approximants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 528-546.
    17. Philipp Weber & Bernd Rosenow, 2006. "Large stock price changes: volume or liquidity?," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 7-14.
    18. Stanisław Drożdż & Jarosław Kwapień & Rafał Rak, 2011. "Characteristics of Financial Fluctuations," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 25.
    19. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    20. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:21:p:4776-4784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.