IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i19p4297-4303.html
   My bibliography  Save this article

Growing networks with preferential deletion and addition of edges

Author

Listed:
  • Deijfen, Maria
  • Lindholm, Mathias

Abstract

A preferential attachment model for a growing network incorporating the deletion of edges is studied and the expected asymptotic degree distribution is analyzed. At each time step t=1,2,…, with probability π1>0 a new vertex with one edge attached to it is added to the network and the edge is connected to an existing vertex chosen proportionally to its degree, with probability π2 a vertex is chosen proportionally to its degree and an edge is added between this vertex and a randomly chosen other vertex, and with probability π3=1−π1−π2<1/2 a vertex is chosen proportionally to its degree and a random edge of this vertex is deleted. The model is intended to capture a situation where high-degree vertices are more dynamic than low-degree vertices in the sense that their connections tend to be changing. A recursion formula is derived for the expected asymptotic fraction pk of vertices with degree k, and solving this recursion reveals that, for π3<1/3, we have pk∼k−(3−7π3)/(1−3π3), while, for π3>1/3, the fraction pk decays exponentially at rate (π1+π2)/2π3. There is hence a non-trivial upper bound for how much deletion the network can incorporate without losing the power-law behavior of the degree distribution. The analytical results are supported by simulations.

Suggested Citation

  • Deijfen, Maria & Lindholm, Mathias, 2009. "Growing networks with preferential deletion and addition of edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4297-4303.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4297-4303
    DOI: 10.1016/j.physa.2009.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109004890
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Ambroggio, Umberto & Yip, Hiu Ching, 2024. "Degree evolution in a general growing network," Statistics & Probability Letters, Elsevier, vol. 211(C).
    2. Johansson, Tobias, 2017. "Gossip spread in social network Models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 126-134.
    3. Li, Bo & Sun, Duoyong & Bai, Guanghan, 2017. "Empirical research on evolutionary behavior of covert network with preference measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 33-43.
    4. Lindholm, Mathias & Vallier, Thomas, 2011. "On the degree evolution of a fixed vertex in some growing networks," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 673-677, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    2. Pablo Medina & Natalia Ariza & Pablo Navas & Fernando Rojas & Gina Parody & Juan Alejandro Valdivia & Roberto Zarama & Juan Felipe Penagos, 2018. "An Unintended Effect of Financing the University Education of the Most Brilliant and Poorest Colombian Students: The Case of the Intervention of the Ser Pilo Paga Program," Complexity, Hindawi, vol. 2018, pages 1-9, December.
    3. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    4. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    5. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    6. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    7. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    8. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    9. G. Ghoshal & M. E.J. Newman, 2007. "Growing distributed networks with arbitrary degree distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 175-184, July.
    10. Chang, Y.F. & Han, S.K. & Wang, X.D., 2018. "The way to uncover community structure with core and diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 111-119.
    11. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    13. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    14. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    15. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    16. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    17. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    18. Ding, Waverly & Choi, Emily, 2008. "Divergent Paths or Stepping Stones: A Comparison of Scientists’ Advising and Founding Activities," Institute for Research on Labor and Employment, Working Paper Series qt4907j25p, Institute of Industrial Relations, UC Berkeley.
    19. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    20. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:19:p:4297-4303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.