IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i8p1875-1894.html
   My bibliography  Save this article

Selfdecomposability and selfsimilarity: A concise primer

Author

Listed:
  • Cufaro Petroni, Nicola

Abstract

We summarize the relations among three classes of laws: infinitely divisible, selfdecomposable and stable. First we look at them as the solutions of the Central Limit Problem; then their role is scrutinized in relation to the Lévy and the additive processes with an emphasis on stationarity and selfsimilarity. Finally we analyze the Ornstein–Uhlenbeck processes driven by Lévy noises and their selfdecomposable stationary distributions, and we end with a few particular examples.

Suggested Citation

  • Cufaro Petroni, Nicola, 2008. "Selfdecomposability and selfsimilarity: A concise primer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 1875-1894.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:8:p:1875-1894
    DOI: 10.1016/j.physa.2007.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107012307
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Hurst exponents, Markov processes, and fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    2. Sandya N. Kumari, 2020. "L¨¦vy Processes in Gold Option Modeling," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(2), pages 1-65, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vygintas Gontis, 2021. "Order flow in the financial markets from the perspective of the Fractional L\'evy stable motion," Papers 2105.02057, arXiv.org, revised Nov 2021.
    2. Vygintas Gontis, 2023. "Discrete $q$-exponential limit order cancellation time distribution," Papers 2306.00093, arXiv.org, revised Oct 2023.
    3. Aleksejus Kononovicius & Bronislovas Kaulakys, 2022. "$1/f$ noise from the sequence of nonoverlapping rectangular pulses," Papers 2210.11792, arXiv.org, revised Mar 2023.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    6. V. Gontis & A. Kononovicius, 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Papers 1701.01255, arXiv.org.
    7. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
    8. Miśkiewicz, Janusz & Ausloos, Marcel, 2008. "Correlation measure to detect time series distances, whence economy globalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6584-6594.
    9. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    10. Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
    11. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    13. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    14. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
    15. Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
    16. McCauley, Joseph L., 2007. "A comment on the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T.D. Frank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 445-452.
    17. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    18. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, detrending data, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 202-216.
    19. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    20. Fan, Feng-Hua & Deng, Yanbin & Huang, Yong-Chang, 2017. "Investigation on financial crises with the negative-information-propagation-induced model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 94-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:8:p:1875-1894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.