IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i27p6837-6844.html
   My bibliography  Save this article

The opportunistic transmission of wireless worms between mobile devices

Author

Listed:
  • Rhodes, C.J.
  • Nekovee, M.

Abstract

The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones.

Suggested Citation

  • Rhodes, C.J. & Nekovee, M., 2008. "The opportunistic transmission of wireless worms between mobile devices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6837-6844.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6837-6844
    DOI: 10.1016/j.physa.2008.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108007772
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Jon Kleinberg, 2007. "The wireless epidemic," Nature, Nature, vol. 449(7160), pages 287-288, September.
    3. Glauche, Ingmar & Krause, Wolfram & Sollacher, Rudolf & Greiner, Martin, 2003. "Continuum percolation of wireless ad hoc communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 577-600.
    4. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Hong & Hongqi Yang & Tingdi Zhao & Xiaomin Ma, 2016. "Epidemic spreading model of complex dynamical network with the heterogeneity of nodes," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(11), pages 2745-2752, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Leiva-Araos & Héctor Allende-Cid, 2021. "A Hierarchical Fuzzy-Based Correction Algorithm for the Neighboring Network Hit Problem," Mathematics, MDPI, vol. 9(4), pages 1-36, February.
    2. Tobias Scholl & Antonios Garas & Frank Schweitzer, 2015. "The spatial component of R&D networks," Papers 1509.08291, arXiv.org.
    3. Nimrod Serok & Efrat Blumenfeld-Lieberthal, 2015. "A Simulation Model for Intra-Urban Movements," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    4. Tobias Scholl & Antonios Garas & Frank Schweitzer, 2018. "The spatial component of R&D networks," Journal of Evolutionary Economics, Springer, vol. 28(2), pages 417-436, April.
    5. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    6. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    7. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    8. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    9. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    10. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    11. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    12. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    13. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    14. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    15. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    16. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    17. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    18. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    19. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    20. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:27:p:6837-6844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.