IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i25p6395-6410.html
   My bibliography  Save this article

Driver choice compared to controlled diversion for a freeway double on-ramp in the framework of three-phase traffic theory

Author

Listed:
  • Davis, L.C.

Abstract

Two diversion schemes that apportion demand between two on-ramps to reduce congestion and improve throughput on a freeway are analyzed. In the first scheme, drivers choose to merge or to divert to a downstream on-ramp based on information about average travel times for the two routes: (1) merge and travel on the freeway or (2) divert and travel on a surface street with merging downstream. The flow, rate of merging at the ramps, and the travel times oscillate strongly, but irregularly, due to delayed feedback. In the second scheme, diversion is controlled by the average mainline velocities just upstream of the on-ramps. Driver choice is not involved. If the average upstream velocity on the mainline drops below a predetermined value (20 m/s) vehicles are diverted to the downstream ramp. When the average mainline velocity downstream becomes too low, diversion is no longer permitted. The resultant oscillations in this scheme are nearly periodic. The period is dominated by the response time of the mainline to interruption of merging rather than delayed feedback, which contributes only a minor component linear in the distance separating the on-ramps. In general the second scheme produces more effective congestion reduction and greater throughput. Also the travel times for on-ramp drivers are less than that obtained by drivers who attempt to minimize their own travel times (first scheme). The simulations are done using the Kerner–Klenov stochastic three-phase theory of traffic [B.S. Kerner, S.L. Klenov, Phys. Rev. E 68 (2003) 036130].

Suggested Citation

  • Davis, L.C., 2008. "Driver choice compared to controlled diversion for a freeway double on-ramp in the framework of three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6395-6410.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:25:p:6395-6410
    DOI: 10.1016/j.physa.2008.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108006730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davis, L.C., 2012. "Mitigation of congestion at a traffic bottleneck with diversion and lane restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1679-1691.
    2. Hu, Xiaojian & Wang, Wei & Yang, Haifei, 2012. "Mixed traffic flow model considering illegal lane-changing behavior: Simulations in the framework of Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5102-5111.
    3. Chen, Jing & Lin, Lan & Jiang, Rui, 2017. "Assigning on-ramp flows to maximize capacity of highway with two on-ramps and one off-ramp in between," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 347-357.
    4. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    5. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:25:p:6395-6410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.