IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i2p543-550.html
   My bibliography  Save this article

Percolation modeling of conductance of self-healing composites

Author

Listed:
  • Dementsov, Alexander
  • Privman, Vladimir

Abstract

We explore the conductance of self-healing materials as a measure of the material integrity in the regime of the onset of the initial fatigue. Continuum effective-field modeling and lattice numerical simulations are reported. Our results illustrate the general features of the self-healing process; the onset of the material fatigue is delayed, by developing a plateau-like time-dependence of the material quality. We demonstrate that in this low-damage regime, the changes in the conductance and similar transport/response properties of the material can be used as measures of the material quality degradation.

Suggested Citation

  • Dementsov, Alexander & Privman, Vladimir, 2007. "Percolation modeling of conductance of self-healing composites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 543-550.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:543-550
    DOI: 10.1016/j.physa.2007.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107007947
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorshkov, Vyacheslav & Privman, Vladimir & Libert, Sergiy, 2016. "Lattice percolation approach to 3D modeling of tissue aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 207-216.
    2. Ren, Minghui & Zhao, Guangsi & Zhou, Guoqing & Qiu, Xianhao & Xue, Qinghua & Chen, Meiting, 2018. "Using strain dynamics for fracture warning of shaft lining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 406-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:543-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.