IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v377y2007i2p689-697.html
   My bibliography  Save this article

Epidemic spreading in a scale-free network of regular lattices

Author

Listed:
  • Silva, S.L.
  • Ferreira, J.A.
  • Martins, M.L.

Abstract

The susceptible-infected-susceptible (SIS) epidemics in a scale-free network in which each node is a square lattice itself is investigated through large-scale computer simulations. The model combines a local contact process among individuals in a node (or city) with stochastic long-range infections due to people traveling between cities interconnected by the national transportation scale-free network. A nonzero epidemic threshold is found and it is approached with a power-law behavior by the density of infected individuals, as observed in the small-world network of Watts and Strogatz. Also, the epidemic propagation follows a 1/f, hierarchical dynamics from the highly connected square lattices to the smaller degree nodes in outbreaks with sizes distributed accordingly a Gaussian function.

Suggested Citation

  • Silva, S.L. & Ferreira, J.A. & Martins, M.L., 2007. "Epidemic spreading in a scale-free network of regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 689-697.
  • Handle: RePEc:eee:phsmap:v:377:y:2007:i:2:p:689-697
    DOI: 10.1016/j.physa.2006.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106012453
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    2. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Zhang, Ding & Ma, Ting & Chen, Yucheng & Wang, Jiajia, 2012. "The impact of authorities’ media and rumor dissemination on the evolution of emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3978-3987.
    3. Zhang, Yi & Xu, Jiuping & Nekovee, Maziar & Li, Zongmin, 2022. "The impact of official rumor-refutation information on the dynamics of rumor spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Li, Mingjie & Orgun, Mehmet A. & Xiao, Jinghua & Zhong, Weicai & Xue, Liyin, 2012. "The impact of human activity patterns on asymptomatic infectious processes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3718-3728.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    2. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    3. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    4. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    5. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    6. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    7. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    8. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    9. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.
    10. A. Chatterjee, 2009. "Kinetic models for wealth exchange on directed networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(4), pages 593-598, February.
    11. D Dylan Johnson Restrepo & Neil F Johnson, 2017. "Unraveling the Collective Dynamics of Complex Adaptive Biomedical Systems," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 8(5), pages 118-132, September.
    12. A. Santiago & J. P. Cárdenas & M. L. Mouronte & V. Feliu & R. M. Benito, 2008. "Modeling The Topology Of Sdh Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(12), pages 1809-1820.
    13. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    14. Slobodan Maletić & Danijela Horak & Milan Rajković, 2012. "Cooperation, Conflict And Higher-Order Structures Of Social Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-29.
    15. Giorgio Fagiolo & Marco Valente & Nicolaas J. Vriend, 2009. "A Dynamic Model of Segregation in Small-World Networks," Lecture Notes in Economics and Mathematical Systems, in: Ahmad K. Naimzada & Silvana Stefani & Anna Torriero (ed.), Networks, Topology and Dynamics, pages 111-126, Springer.
    16. H. Lin & C.-X. Wu, 2006. "Dynamics of congestion transition triggered by multiple walkers on complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(4), pages 543-547, June.
    17. Derzsi, A. & Derzsy, N. & Káptalan, E. & Néda, Z., 2011. "Topology of the Erasmus student mobility network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2601-2610.
    18. Gómez-Gardeñes, J. & Moreno, Y. & Floría, L.M., 2005. "Michaelis–Menten dynamics in complex heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 265-281.
    19. G. De Masi & Y. Fujiwara & M. Gallegati & B. Greenwald & J. E. Stiglitz, 2009. "An Analysis of the Japanese Credit Network," Papers 0901.2384, arXiv.org, revised Nov 2010.
    20. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:377:y:2007:i:2:p:689-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.