IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v369y2006i2p655-678.html
   My bibliography  Save this article

Regular and stochastic behavior of Parkinsonian pathological tremor signals

Author

Listed:
  • Yulmetyev, R.M.
  • Demin, S.A.
  • Panischev, O. Yu.
  • Hänggi, Peter
  • Timashev, S.F.
  • Vstovsky, G.V.

Abstract

Regular and stochastic behavior in the time series of Parkinsonian pathological tremor velocity is studied on the basis of the statistical theory of discrete non-Markov stochastic processes and flicker-noise spectroscopy. We have developed a new method of analyzing and diagnosing Parkinson's disease (PD) by taking into consideration discreteness, fluctuations, long- and short-range correlations, regular and stochastic behavior, Markov and non-Markov effects and dynamic alternation of relaxation modes in the initial time signals. The spectrum of the statistical non-Markovity parameter reflects Markovity and non-Markovity in the initial time series of tremor. The relaxation and kinetic parameters used in the method allow us to estimate the relaxation scales of diverse scenarios of the time signals produced by the patient in various dynamic states. The local time behavior of the initial time correlation function and the first point of the non-Markovity parameter give detailed information about the variation of pathological tremor in the local regions of the time series. The obtained results can be used to find the most effective method of reducing or suppressing pathological tremor in each individual case of a PD patient. Generally, the method allows one to assess the efficacy of the medical treatment for a group of PD patients.

Suggested Citation

  • Yulmetyev, R.M. & Demin, S.A. & Panischev, O. Yu. & Hänggi, Peter & Timashev, S.F. & Vstovsky, G.V., 2006. "Regular and stochastic behavior of Parkinsonian pathological tremor signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 655-678.
  • Handle: RePEc:eee:phsmap:v:369:y:2006:i:2:p:655-678
    DOI: 10.1016/j.physa.2006.01.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106001385
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.01.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yulmetyev, Renat M. & Emelyanova, Natalya A. & Demin, Sergey A. & Gafarov, Fail M. & Hänggi, Peter & Yulmetyeva, Dinara G., 2004. "Non-Markov stochastic dynamics of real epidemic process of respiratory infections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 300-318.
    2. Yulmetyev, Renat & Demin, Sergey & Emelyanova, Natalya & Gafarov, Fail & Hänggi, Peter, 2003. "Stratification of the phase clouds and statistical effects of the non-Markovity in chaotic time series of human gait for healthy people and Parkinson patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 432-446.
    3. Yulmetyev, Renat M. & Mokshin, Anatolii V. & Hänggi, Peter, 2005. "Universal approach to overcoming nonstationarity, unsteadiness and non-Markovity of stochastic processes in complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 303-325.
    4. Gonze, Didier & Halloy, José & Goldbeter, Albert, 2004. "Emergence of coherent oscillations in stochastic models for circadian rhythms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 221-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shuangming & Wei, Xile & Deng, Bin & Liu, Chen & Li, Huiyan & Wang, Jiang, 2018. "Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 484-502.
    2. Pakrashi, Vikram & Kelly, Joe & Harkin, Julie & Farrell, Aidan, 2013. "Hurst exponent footprints from activities on a large structural system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1803-1817.
    3. Lahmiri, Salim, 2017. "Parkinson’s disease detection based on dysphonia measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 98-105.
    4. De Gregorio, Juan & Sánchez, David & Toral, Raúl, 2022. "An improved estimator of Shannon entropy with applications to systems with memory," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. de Oliveira, M. Elias & Menegaldo, L.L. & Lucarelli, P. & Andrade, B.L.B. & Büchler, P., 2011. "On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4451-4458.
    6. Mulligan, Robert F., 2014. "Multifractality of sectoral price indices: Hurst signature analysis of Cantillon effects in disequilibrium factor markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 252-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulmetyev, Renat M. & Demin, Sergey A. & Panischev, Oleg Yu. & Hänggi, Peter, 2005. "Age-related alterations of relaxation processes and non-Markov effects in stochastic dynamics of R–R intervals variability from human ECGs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 336-352.
    2. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Lahmiri, Salim, 2017. "Parkinson’s disease detection based on dysphonia measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 98-105.
    4. Galimzyanov, Bulat N. & Mokshin, Anatolii V., 2017. "Three-particle correlations in liquid and amorphous aluminium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 103-112.
    5. Yulmetyev, Renat M. & Emelyanova, Natalya A. & Demin, Sergey A. & Gafarov, Fail M. & Hänggi, Peter & Yulmetyeva, Dinara G., 2004. "Non-Markov stochastic dynamics of real epidemic process of respiratory infections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 300-318.
    6. Slepukhina, E. & Ryashko, L. & Kügler, P., 2020. "Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:369:y:2006:i:2:p:655-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.