IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v363y2006i2p446-458.html
   My bibliography  Save this article

Consumers don’t play dice, influence of social networks and advertisements

Author

Listed:
  • Groot, Robert D.

Abstract

Empirical data of supermarket sales show stylised facts that are similar to stock markets, with a broad (truncated) Lévy distribution of weekly sales differences in the baseline sales [R.D. Groot, Physica A 353 (2005) 501]. To investigate the cause of this, the influence of social interactions and advertisements are studied in an agent-based model of consumers in a social network. The influence of network topology was varied by using a small-world network, a random network and a Barabási–Albert network. The degree to which consumers value the opinion of their peers was also varied.

Suggested Citation

  • Groot, Robert D., 2006. "Consumers don’t play dice, influence of social networks and advertisements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 446-458.
  • Handle: RePEc:eee:phsmap:v:363:y:2006:i:2:p:446-458
    DOI: 10.1016/j.physa.2005.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105008575
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotaro Ohori & Shingo Takahashi, 2012. "Market design for standardization problems with agent-based social simulation," Journal of Evolutionary Economics, Springer, vol. 22(1), pages 49-77, January.
    2. Eyal Carmi & Gal OEstreicher-Singer & Arun Sundararajan, 2010. "Is Oprah Contagious? Identifying Demand Spillovers in Product Networks," Working Papers 10-18, NET Institute.
    3. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:363:y:2006:i:2:p:446-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.