IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v357y2005i3p501-512.html
   My bibliography  Save this article

Graph theoretic analysis of protein interaction networks of eukaryotes

Author

Listed:
  • Goh, K.-I.
  • Kahng, B.
  • Kim, D.

Abstract

Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.

Suggested Citation

  • Goh, K.-I. & Kahng, B. & Kim, D., 2005. "Graph theoretic analysis of protein interaction networks of eukaryotes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 501-512.
  • Handle: RePEc:eee:phsmap:v:357:y:2005:i:3:p:501-512
    DOI: 10.1016/j.physa.2005.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105003560
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Difei & Jian, Lirong & Cao, Fengyuan & Xue, Chenyan, 2022. "An extended scale-free network evolution model based on star-like coupling motif embedding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Huang, Jiun-Yan, 2009. "Tomography of functional organization in protein–protein interaction network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2072-2080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:357:y:2005:i:3:p:501-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.