IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v350y2005i2p207-226.html
   My bibliography  Save this article

The interplay of synchronization and fluctuations reveals connectivity levels in networks of nonlinear oscillators

Author

Listed:
  • Hütt, M.-Th.
  • Lüttge, U.

Abstract

We study spatiotemporal patterns produced by small-world networks of biologically motivated nonlinear oscillators from a data-analysis perspective. It is shown that the connectivity levels of such systems can be reconstructed by analyzing heterogeneity and fluctuation content of the patterns. These properties are determined by applying spatiotemporal filters described in [Physica A 289 (2001) 498] to pairs of oscillators in a network. Possible applications of our method to biological data (e.g., time-resolved cDNA microarray data), in order to distinguish densely connected systems from sparsely connected systems, are commented on.

Suggested Citation

  • Hütt, M.-Th. & Lüttge, U., 2005. "The interplay of synchronization and fluctuations reveals connectivity levels in networks of nonlinear oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 207-226.
  • Handle: RePEc:eee:phsmap:v:350:y:2005:i:2:p:207-226
    DOI: 10.1016/j.physa.2004.11.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104014980
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.11.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Farkas, I. & Jeong, H. & Vicsek, T. & Barabási, A.-L. & Oltvai, Z.N., 2003. "The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 601-612.
    3. E. Almaas & B. Kovács & T. Vicsek & Z. N. Oltvai & A.-L. Barabási, 2004. "Global organization of metabolic fluxes in the bacterium Escherichia coli," Nature, Nature, vol. 427(6977), pages 839-843, February.
    4. Hütt, M.-Th. & Neff, R., 2001. "Quantification of spatiotemporal phenomena by means of cellular automata techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 498-516.
    5. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    6. Leland H. Hartwell & John J. Hopfield & Stanislas Leibler & Andrew W. Murray, 1999. "From molecular to modular cell biology," Nature, Nature, vol. 402(6761), pages 47-52, December.
    7. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marr, Carsten & Hütt, Marc-Thorsten, 2005. "Topology regulates pattern formation capacity of binary cellular automata on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 641-662.
    2. Carvunis, Anne-Ruxandra & Latapy, Matthieu & Lesne, Annick & Magnien, Clémence & Pezard, Laurent, 2006. "Dynamics of three-state excitable units on Poisson vs. power-law random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 595-612.
    3. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    4. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    5. Gerhardt, Günther J.L. & Lemke, Ney & Corso, Gilberto, 2006. "Network clustering coefficient approach to DNA sequence analysis," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1037-1045.
    6. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    7. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    8. Lawford, Steve & Mehmeti, Yll, 2020. "Cliques and a new measure of clustering: With application to U.S. domestic airlines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    10. Wang, Huan & Xu, Chuan-Yun & Hu, Jing-Bo & Cao, Ke-Fei, 2014. "A complex network analysis of hypertension-related genes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 166-176.
    11. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    12. Ramon Ferrer i Cancho & Ricard V. Solé, 2001. "The Small-World of Human Language," Working Papers 01-03-016, Santa Fe Institute.
    13. Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
    14. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    15. Joshua S Weitz & Philip N Benfey & Ned S Wingreen, 2007. "Evolution, Interactions, and Biological Networks," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-3, January.
    16. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    17. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    18. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    19. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    20. Emerson, I. Arnold & Gothandam, K.M., 2012. "Network analysis of transmembrane protein structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 905-916.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:350:y:2005:i:2:p:207-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.