IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v342y2004i3p623-638.html
   My bibliography  Save this article

Statistical analysis of gene and intergenic DNA sequences

Author

Listed:
  • Kugiumtzis, D.
  • Provata, A.

Abstract

Much of the on-going statistical analysis of DNA sequences is focused on the estimation of characteristics of coding and non-coding regions that would possibly allow discrimination of these regions. In the current approach, we concentrate specifically on genes and intergenic regions. To estimate the level and type of correlation in these regions we apply various statistical methods inspired from nonlinear time series analysis, namely the probability distribution of tuplets, the Mutual Information and the Identical Neighbour Fit. The methods are suitably modified to work on symbolic sequences and they are first tested for validity on sequences obtained from well-known simple deterministic and stochastic models. Then they are applied to the DNA sequence of chromosome 1 of arabidopsis thaliana. The results suggest that correlations do exist in the DNA sequence but they are weak and that intergenic sequences tend to be more correlated than gene sequences. The use of statistical tests with surrogate data establish these findings in a rigorous statistical manner.

Suggested Citation

  • Kugiumtzis, D. & Provata, A., 2004. "Statistical analysis of gene and intergenic DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 623-638.
  • Handle: RePEc:eee:phsmap:v:342:y:2004:i:3:p:623-638
    DOI: 10.1016/j.physa.2004.05.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104006405
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.05.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buldyrev, S.V. & Dokholyan, N.V. & Goldberger, A.L. & Havlin, S. & Peng, C.-K. & Stanley, H.E. & Viswanathan, G.M., 1998. "Analysis of DNA sequences using methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 249(1), pages 430-438.
    2. Stanley, H.E & Buldyrev, S.V & Goldberger, A.L & Havlin, S & Peng, C.-K & Simons, M, 1999. "Scaling features of noncoding DNA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 273(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papapetrou, M. & Kugiumtzis, D., 2013. "Markov chain order estimation with conditional mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1593-1601.
    2. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saha, Debajyoti & Shaw, Pankaj Kumar & Ghosh, Sabuj & Janaki, M.S. & Sekar Iyengar, A.N., 2018. "Quantification of scaling exponent with Crossover type phenomena for different types of forcing in DC glow discharge plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 300-310.
    2. Licinio, P & Caligiorne, R.B, 2004. "Inference of phylogenetic distances from DNA-walk divergences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 471-481.
    3. Sidorov, S.P. & Faizliev, A.R. & Balash, V.A. & Korobov, E.A., 2016. "Long-range correlation analysis of economic news flow intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 205-212.
    4. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    5. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    7. Xie, Rongrong & Deng, Shengfeng & Deng, Weibing & Pato, Mauricio P., 2022. "Generalized Poisson ensemble," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Santos, J.V.C. & Moreira, D.M. & Moret, M.A. & Nascimento, E.G.S., 2019. "Analysis of long-range correlations of wind speed in different regions of Bahia and the Abrolhos Archipelago, Brazil," Energy, Elsevier, vol. 167(C), pages 680-687.
    9. Silva, R. & Silva, J.R.P. & Anselmo, D.H.A.L. & Alcaniz, J.S. & da Silva, W.J.C. & Costa, M.O., 2020. "An alternative description of power law correlations in DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Lopes, S.R.C. & Nunes, M.A., 2006. "Long memory analysis in DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 569-588.
    11. Buldyrev, Sergey V. & Dokholyan, Nikolay V. & Havlin, Shlomo & Stanley, H.Eugene & Stanley, Rachel H.R., 1999. "Expansion of tandem repeats and oligomer clustering in coding and noncoding DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 273(1), pages 19-32.
    12. Şahin, Gökhan & Erentürk, Murat & Hacinliyan, Avadis, 2009. "Detrended fluctuation analysis in natural languages using non-corpus parametrization," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 198-205.
    13. Jin, Xin & Nie, Rencan & Zhou, Dongming & Yao, Shaowen & Chen, Yanyan & Yu, Jiefu & Wang, Quan, 2016. "A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and Huffman coding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 325-338.
    14. Karakatsanis, L.P. & Pavlos, G.P. & Iliopoulos, A.C. & Pavlos, E.G. & Clark, P.M. & Duke, J.L. & Monos, D.S., 2018. "Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 77-93.
    15. Papapetrou, M. & Kugiumtzis, D., 2013. "Markov chain order estimation with conditional mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1593-1601.
    16. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    17. Farzadian, O. & Niry, M.D., 2016. "Delocalization of mechanical waves in the ladder chain of DNA with correlated disorder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 95-103.
    18. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    19. Miśkiewicz, Janusz, 2013. "Effects of publications in proceedings on the measure of the core size of coauthors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5119-5131.
    20. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:342:y:2004:i:3:p:623-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.