IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v337y2004i1p196-218.html
   My bibliography  Save this article

A model of complex behavior of interbank exchange markets

Author

Listed:
  • Suzuki, Tomoya
  • Ikeguchi, Tohru
  • Suzuki, Masuo

Abstract

In the present paper, we analyze the complex interaction among three macroscopic variables, dealing time intervals, spreads between ask and bid prices and price movements, observed in actual interbank exchange markets. For this analysis, we propose a new model of interbank exchange dealings as a statistical system integrated by many dealers’ actions with the methods of statistical physics. For evaluating the plausibility of our model, we compare outputs from the proposed model with the real data by reconstructing a state space with the above three variables, observing ensemble behavior in each day and estimating statistical properties. As a result, we can confirm that our model is plausible, and we perform the above analysis with our model from the viewpoint of statistical physics.

Suggested Citation

  • Suzuki, Tomoya & Ikeguchi, Tohru & Suzuki, Masuo, 2004. "A model of complex behavior of interbank exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 196-218.
  • Handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:196-218
    DOI: 10.1016/j.physa.2004.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104000524
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Youngki Lee & Luis A. N. Amaral & David Canning & Martin Meyer & H. Eugene Stanley, 1998. "Universal features in the growth dynamics of complex organizations," Papers cond-mat/9804100, arXiv.org.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    6. Suzuki, Tomoya & Ikeguchi, Tohru & Suzuki, Masuo, 2003. "Multivariable nonlinear analysis of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 591-600.
    7. Vasiliki Plerou & Luís A. Nunes Amaral & Parameswaran Gopikrishnan & Martin Meyer & H. Eugene Stanley, 1999. "Similarities between the growth dynamics of university research and of competitive economic activities," Nature, Nature, vol. 400(6743), pages 433-437, July.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anca Gheorghiu & Ion Sp^anulescu, 2011. "Macrostate Parameter and Investment Risk Diagrams for 2008 and 2009," Papers 1101.4674, arXiv.org.
    2. Anca Gheorghiu & Ion Spanulescu, 2009. "Macrostate Parameter, an Econophysics Approach for the Risk Analysis of the Stock Exchange Market Transactions," Papers 0907.5600, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    2. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    3. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    6. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    7. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    8. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    10. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    11. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    12. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    13. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    14. Jianlei Han & Martina Linnenluecke & Zhangxin Liu & Zheyao Pan & Tom Smith, 2019. "A general equilibrium approach to pricing volatility risk," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    15. N. S. Gonchar, 2020. "Derivatives Pricing in Non-Arbitrage Market," Papers 2010.13630, arXiv.org.
    16. Francisco Venegas Martínez & Abigail Rodríguez Nava, 2009. "Consumo y decisiones de portafolio en ambientes estocásticos: un marco teórico unificador," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 29-64, November.
    17. Ming-Yuan Leon Li & Chun-Nan Chen, 2010. "Examining the interrelation dynamics between option and stock markets using the Markov-switching vector error correction model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(7), pages 1173-1191.
    18. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    19. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    20. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:196-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.