IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v287y2000i3p539-545.html
   My bibliography  Save this article

Physics of fashion fluctuations

Author

Listed:
  • Donangelo, R.
  • Hansen, A.
  • Sneppen, K.
  • Souza, S.R.

Abstract

We consider a market where many agents trade different types of products with each other. We model development of collective modes in this market, and quantify these by fluctuations that scale with time with a Hurst exponent of about 0.7. We demonstrate that individual products in the model occasionally become globally accepted means of exchange, and simultaneously become very actively traded. Thus collective features similar to money spontaneously emerge, without any a priori reason.

Suggested Citation

  • Donangelo, R. & Hansen, A. & Sneppen, K. & Souza, S.R., 2000. "Physics of fashion fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 539-545.
  • Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:539-545
    DOI: 10.1016/S0378-4371(00)00391-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003915
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00391-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    2. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    3. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    4. Youssefmir, Michael & Huberman, Bernardo A & Hogg, Tad, 1998. "Bubbles and Market Crashes," Computational Economics, Springer;Society for Computational Economics, vol. 12(2), pages 97-114, October.
    5. Donangelo, Raul & Hansen, Alex & Sneppen, Kim & Souza, Sergio R., 2000. "Modelling an imperfect market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 469-478.
    6. R. Donangelo & K. Sneppen, 1999. "Self-organization of value and demand," Papers cond-mat/9906298, arXiv.org, revised Apr 2000.
    7. G. Caldarelli & M. Marsili & Y. -C. Zhang, 1997. "A Prototype Model of Stock Exchange," Papers cond-mat/9709118, arXiv.org.
    8. Donangelo, R & Sneppen, K, 2000. "Self-organization of value and demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 276(3), pages 572-580.
    9. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    3. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    4. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    5. Rothenstein, R & Pawelzik, K, 2003. "Evolution and anti-evolution in a minimal stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 326(3), pages 534-543.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    8. Helbing, Dirk & Kern, Daniel, 2000. "Non-equilibrium price theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 259-268.
    9. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    10. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.
    11. Gusev, Maxim & Kroujiline, Dimitri & Govorkov, Boris & Sharov, Sergey V. & Ushanov, Dmitry & Zhilyaev, Maxim, 2014. "Predictable markets? A news-driven model of the stock market," MPRA Paper 58831, University Library of Munich, Germany.
    12. Christopher D. Clack & Elias Court & Dmitrijs Zaparanuks, 2020. "Dynamic Coupling and Market Instability," Papers 2005.13621, arXiv.org.
    13. Jean-Philippe Bouchaud, 1998. "Elements for a theory of financial risks," Science & Finance (CFM) working paper archive 500042, Science & Finance, Capital Fund Management.
    14. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    15. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    16. Christophe Schinckus, 2011. "What can econophysics contribute to financial economics?," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 58(2), pages 147-163, June.
    17. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    18. Lye, Ribin & Tan, James Peng Lung & Cheong, Siew Ann, 2012. "Understanding agent-based models of financial markets: A bottom–up approach based on order parameters and phase diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5521-5531.
    19. J. Doyne Farmer, 2000. "A Simple Model For The Nonequilibrium Dynamics And Evolution Of A Financial Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 425-441.
    20. Owhadi, Houman, 2004. "From a market of dreamers to economical shocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 583-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:539-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.