IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v216y1995i4p382-385.html
   My bibliography  Save this article

A bacterial colony is not self-similar

Author

Listed:
  • Ruzicka, Marek C.
  • Fridrich, Mirek
  • Burkhard, Martin

Abstract

The geometry of complex bacterial colonies has been studied. Different values of the exponent in scaling law have been recorded on different length scales. Thus a colony is not a self-similar object and has a multiple fractal structure.

Suggested Citation

  • Ruzicka, Marek C. & Fridrich, Mirek & Burkhard, Martin, 1995. "A bacterial colony is not self-similar," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(4), pages 382-385.
  • Handle: RePEc:eee:phsmap:v:216:y:1995:i:4:p:382-385
    DOI: 10.1016/0378-4371(95)00050-H
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719500050H
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(95)00050-H?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsushita, Mitsugu & Fujikawa, Hiroshi, 1990. "Diffusion-limited growth in bacterial colony formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 168(1), pages 498-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csahók, Zoltán & Czirók, András, 1997. "Hydrodynamics of bacterial motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 243(3), pages 304-318.
    2. Ben-Jacob, Eshel, 1998. "Bacterial wisdom, Gödel's theorem and creative genomic webs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 248(1), pages 57-76.
    3. Lin Chen & Javad Noorbakhsh & Rhys M Adams & Joseph Samaniego-Evans & Germaine Agollah & Dmitry Nevozhay & Jennie Kuzdzal-Fick & Pankaj Mehta & Gábor Balázsi, 2014. "Two-Dimensionality of Yeast Colony Expansion Accompanied by Pattern Formation," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-14, December.
    4. Golding, Ido & Kozlovsky, Yonathan & Cohen, Inon & Ben-Jacob, Eshel, 1998. "Studies of bacterial branching growth using reaction–diffusion models for colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 260(3), pages 510-554.
    5. Muzzio, Nicolás E. & Horowitz, Claudio M. & Azzaroni, Omar & Moya, Sergio E. & Pasquale, Miguel A., 2021. "Tilted mammalian cell colony propagation dynamics on patterned substrates," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Ben-Jacob, Eshel & Tenenbaum, Adam & Shochet, Ofer & Avidan, Orna, 1994. "Holotransformations of bacterial colonies and genome cybernetics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 202(1), pages 1-47.
    7. Tatek, Yergou B. & Slater, Gary W., 2006. "A simulation model of biofilms with autonomous cells: I. Analysis of a two-dimensional version," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 382-402.
    8. Ben-Jacob, Eshel & Cohen, Inon & Czirók, András & Vicsek, Tamás & Gutnick, David L., 1997. "Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 181-197.
    9. Salcedo-Sanz, S. & Cuadra, L., 2019. "Hybrid L-systems–Diffusion Limited Aggregation schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 592-605.
    10. Ben-Jacob, Eshel & Cohen, Inon & Golding, Ido & Gutnick, David L. & Tcherpakov, Marianna & Helbing, Dirk & Ron, Ilan G., 2000. "Bacterial cooperative organization under antibiotic stress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 247-282.
    11. Frey, Erwin, 2010. "Evolutionary game theory: Theoretical concepts and applications to microbial communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4265-4298.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:216:y:1995:i:4:p:382-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.