IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v175y1991i1p9-30.html
   My bibliography  Save this article

Properties of the growth probability for the dielectric breakdown model in cylinder geometry

Author

Listed:
  • Marsili, M.
  • Pietronero, L.

Abstract

We study the properties of the growth probabilities for diffusion limited aggregation and the dielectric breakdown model in the steady state regime of the cylinder geometry. The results show a rather unambiguous picture with the following properties: The projection of the growth probability along the growth direction is exponential, contrary to the Gaussian behavior of the radial case. One can distinguish two regions, one with simple multifractal properties corresponding to the growing zone and a second one which accounts for the exponential decay of the growth probability. This situation can be explained in terms of a first order transition in the multifractal spectrum at q = 1. This corresponds to a different picture with respect to those that have been proposed in the literature. The properties of the growing interface could be universal while the small probability part is non-universal and it depends on the particular geometry. However, we can show that this part is irrelevant with respect to the growth process, even though it is determined by it.

Suggested Citation

  • Marsili, M. & Pietronero, L., 1991. "Properties of the growth probability for the dielectric breakdown model in cylinder geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 175(1), pages 9-30.
  • Handle: RePEc:eee:phsmap:v:175:y:1991:i:1:p:9-30
    DOI: 10.1016/0378-4371(91)90266-F
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719190266F
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(91)90266-F?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tolman, Susan & Meakin, Paul, 1989. "Two, three and four-dimensional diffusion-limited aggregation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 158(3), pages 801-816.
    2. Pietronero, L. & Erzan, A. & Evertsz, C., 1988. "Theory of Laplacian fractals: Diffusion limited aggregation and dielectric breakdown model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 151(2), pages 207-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marsili, M. & Pietronero, L., 1991. "Fixed scale transformation approach to the multifractcal properties of the growth probabilities in the dielectric breakdown model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 175(1), pages 31-46.
    2. Nicolás-Carlock, J.R. & Solano-Altamirano, J.M. & Carrillo-Estrada, J.L., 2020. "The dynamics of the angular and radial density correlation scaling exponents in fractal to non-fractal morphodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Meneveau, Charles & Chhabra, Ashvin B., 1990. "Two-point statistics of multifractal measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 164(3), pages 564-574.
    4. Vergassola, M. & Vespignani, A., 1991. "Non-conservative character of the intersection of self-similar cascades," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 174(2), pages 425-437.
    5. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    6. Meakin, Paul, 1992. "Simplified diffusion-limited aggregation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 187(1), pages 1-17.
    7. Evertsz, Carl J.G. & Mandelbrot, Benoit B., 1992. "Self-similarity of harmonic measure on DLA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 77-86.
    8. Tolman, Susan & Meakin, Paul, 1989. "Two, three and four-dimensional diffusion-limited aggregation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 158(3), pages 801-816.
    9. Lee, Sung Jong & Halsey, Thomas C., 1990. "Some results on multifractal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 164(3), pages 575-592.
    10. Sidoretti, S. & Vespignani, A., 1992. "Fixed scale transformation applied to cluster-cluster aggregation in two and three dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 202-210.
    11. Vanderzande, Carlo, 1992. "Fractal dimensions of Potts clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 235-239.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:175:y:1991:i:1:p:9-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.