IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v115y1982i1p21-57.html
   My bibliography  Save this article

Many-sphere hydrodynamic interactions and mobilities in a suspension

Author

Listed:
  • Mazur, P.
  • van Saarloos, W.

Abstract

A general scheme is presented to evaluate the mobility tensors of an arbitrary number of spheres, immersed in a viscous fluid, in a power series expansion in R-1, where R is a typical distance between spheres. Some general properties of these (translational and rotational) mobility tensors are discussed. Explicit expressions are derived up to order R-7. To this order, hydrodynamic interactions between two, three and four spheres contribute.

Suggested Citation

  • Mazur, P. & van Saarloos, W., 1982. "Many-sphere hydrodynamic interactions and mobilities in a suspension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 115(1), pages 21-57.
  • Handle: RePEc:eee:phsmap:v:115:y:1982:i:1:p:21-57
    DOI: 10.1016/0378-4371(82)90127-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437182901273
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(82)90127-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazur, P. & van der Zwan, G., 1978. "Brownian motion in a fluid close to its' critical point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 92(3), pages 483-500.
    2. Oppenheim, Felix E., 1971. "Comment: Defense of Noncognitivism Defended," American Political Science Review, Cambridge University Press, vol. 65(4), pages 1115-1116, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wajnryb, E. & Szymczak, P. & Cichocki, B., 2004. "Brownian dynamics: divergence of mobility tensor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 339-358.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Titulaer, U.M., 1980. "Corrections to the Smoluchowski equation in the presence of hydrodynamic interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 100(2), pages 251-265.
    2. Braun, E., 1980. "A model of Brownian dynamics for colloidal suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 103(1), pages 325-342.
    3. Weisenborn, A.J & Mazur, P, 1984. "The Oseen drag on a circular cylinder revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 123(1), pages 191-208.
    4. Nieuwoudt, J.C. & Sengers, J.V., 1987. "Frequency dependence of transport properties of fluids near the critical point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 147(1), pages 368-386.
    5. Lindenberg, Katja & Mohanty, Udayan & Seshadri, V., 1983. "Hamiltonian model for the Brownian motion of a rigid rotor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 119(1), pages 1-16.
    6. Felderhof, B.U., 1987. "Brownian motion and creeping flow on the Smoluchowski time scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 147(1), pages 203-218.
    7. Aizenbud, Boris M. & Gershon, Nahum D., 1981. "Hydrodynamic equations and VH light scattering from viscoelastic (solid-like and fluid-like) systems. Phenomenological approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 107(1), pages 126-142.
    8. Felderhof, B.U. & Jones, R.B., 1980. "Contracted description of fluctuating systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 102(1), pages 179-192.
    9. van der Zwan, G. & Mazur, P., 1979. "Brownian motion in a fluid near its critical point II: The fluctuation-dissipation theorem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 98(1), pages 169-188.
    10. Mohanty, U. & Shuler, K.E. & Oppenheim, I., 1982. "On the exact and phenomenological Langevin equations for a harmonic oscillator in a fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 115(1), pages 1-20.
    11. Posch, H.A. & Balucani, U. & Vallauri, R., 1984. "On the relative dynamics of pairs of atoms in simple liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 123(2), pages 516-534.
    12. Balucani, U. & Vallauri, R., 1980. "Relative motions in atomic fluids: A molecular dynamics investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 102(1), pages 70-86.
    13. van Saarloos, W. & Mazur, P., 1983. "Many-sphere hydrodynamic interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 120(1), pages 77-102.
    14. Mazur, P., 1982. "On the motion and Brownian motion of n spheres in a viscous fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 110(1), pages 128-146.
    15. Perez-Madrid, A. & Rubi, J.M., 1985. "Friction, diffusion and Brownian motion in suspensions of dipolar spherical particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 132(2), pages 438-456.
    16. Brey, J.J. & Casado, J.M. & Morillo, M., 1983. "On the derivation of an N-particle analogue of the Fokker-Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 121(1), pages 122-134.
    17. Aizenbud, Boris M., 1981. "Light scattering from fluids. A semi-phenomenological calculation of the coupling constants between the orientational and translational motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 107(2), pages 404-422.
    18. Van Kampen, N.G. & Oppenheim, I., 1986. "Brownian motion as a problem of eliminating fast variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 231-248.
    19. Van der Zwan, G., 1985. "A Faxén theorem for the reactivity of a spherical sink," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 131(1), pages 237-250.
    20. Hynes, James T. & Kapral, Raymond & Weinberg, Michael, 1975. "Microscopic theory of brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 81(4), pages 509-521.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:115:y:1982:i:1:p:21-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.