IDEAS home Printed from https://ideas.repec.org/a/eee/moneco/v132y2022icp24-43.html
   My bibliography  Save this article

A new approach to integrating expectations into VAR models

Author

Listed:
  • Doh, Taeyoung
  • Smith, A. Lee

Abstract

Expectations play a central role in macroeconomics. Expectations are empirically measured from surveys or financial markets and are frequently analyzed in Vector autoregressive (VAR) models alongside realized data of the same variable. However, this leads to two different expectations for the same variable: the VAR-based forecast and the external forecast. This paper proposes a Bayesian prior over the VAR parameters which allows for varying degrees of consistency between these two forecasts. As we demonstrate in two applications, our approach can sharpen structural VAR identification of forward guidance shocks and enhances VAR forecasts of inflation tail risks.

Suggested Citation

  • Doh, Taeyoung & Smith, A. Lee, 2022. "A new approach to integrating expectations into VAR models," Journal of Monetary Economics, Elsevier, vol. 132(C), pages 24-43.
  • Handle: RePEc:eee:moneco:v:132:y:2022:i:c:p:24-43
    DOI: 10.1016/j.jmoneco.2022.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304393222001076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmoneco.2022.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George-Marios Angeletos & Chen Lian, 2018. "Forward Guidance without Common Knowledge," American Economic Review, American Economic Association, vol. 108(9), pages 2477-2512, September.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Clark, Todd E. & Davig, Troy, 2011. "Decomposing the declining volatility of long-term inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 981-999, July.
    4. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    5. Michael Kiley, 2016. "Policy Paradoxes in the New-Keynesian Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 21, pages 1-15, July.
    6. Dominic Anene & Stefania D'Amico, 2017. "A Tale of Four Tails: Inflation, the Policy Rate, Longer-Term Rates, and Stock Prices," Working Paper Series WP-2017-26, Federal Reserve Bank of Chicago.
    7. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    8. Emmanuel Farhi & Iván Werning, 2019. "Monetary Policy, Bounded Rationality, and Incomplete Markets," American Economic Review, American Economic Association, vol. 109(11), pages 3887-3928, November.
    9. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    10. Sharon Kozicki & P. A. Tinsley, 2012. "Effective Use of Survey Information in Estimating the Evolution of Expected Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 145-169, February.
    11. Xavier Gabaix, 2020. "A Behavioral New Keynesian Model," American Economic Review, American Economic Association, vol. 110(8), pages 2271-2327, August.
    12. Emi Nakamura & Jón Steinsson, 2018. "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1283-1330.
    13. Mariana García-Schmidt & Michael Woodford, 2019. "Are Low Interest Rates Deflationary? A Paradox of Perfect-Foresight Analysis," American Economic Review, American Economic Association, vol. 109(1), pages 86-120, January.
    14. Jeffrey R. Campbell & Jonas D. M. Fisher & Alejandro Justiniano & Leonardo Melosi, 2017. "Forward Guidance and Macroeconomic Outcomes since the Financial Crisis," NBER Macroeconomics Annual, University of Chicago Press, vol. 31(1), pages 283-357.
    15. Alisdair McKay & Emi Nakamura & Jón Steinsson, 2016. "The Power of Forward Guidance Revisited," American Economic Review, American Economic Association, vol. 106(10), pages 3133-3158, October.
    16. Gauti B. Eggertsson & Michael Woodford, 2003. "The Zero Bound on Interest Rates and Optimal Monetary Policy," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 34(1), pages 139-235.
    17. Olivier Coibion & Yuriy Gorodnichenko & Rupal Kamdar, 2018. "The Formation of Expectations, Inflation, and the Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 56(4), pages 1447-1491, December.
    18. Masazumi Hattori & Andreas Schrimpf & Vladyslav Sushko, 2016. "The Response of Tail Risk Perceptions to Unconventional Monetary Policy," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(2), pages 111-136, April.
    19. Arias, Jonas E. & Caldara, Dario & Rubio-Ramírez, Juan F., 2019. "The systematic component of monetary policy in SVARs: An agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 1-13.
    20. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, January.
    21. Swanson, Eric T., 2021. "Measuring the effects of federal reserve forward guidance and asset purchases on financial markets," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 32-53.
    22. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    23. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    24. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    25. Timothy Cogley, 2005. "Changing Beliefs and the Term Structure of Interest Rates: Cross-Equation Restrictions with Drifting Parameters," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 420-451, April.
    26. Christian K. Wolf, 2020. "SVAR (Mis)identification and the Real Effects of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(4), pages 1-32, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Adams & Philip Barrett, 2024. "Shocks to Inflation Expectations," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    2. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36, Federal Reserve Bank of Cleveland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrade, Philippe & Ferroni, Filippo, 2021. "Delphic and odyssean monetary policy shocks: Evidence from the euro area," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 816-832.
    2. Philippe Andrade & Gaetano Gaballo & Eric Mengus & Benoît Mojon, 2019. "Forward Guidance and Heterogeneous Beliefs," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(3), pages 1-29, July.
    3. Ferreira, Leonardo N., 2022. "Forward guidance matters: Disentangling monetary policy shocks," Journal of Macroeconomics, Elsevier, vol. 73(C).
    4. Matthew Read, 2023. "Estimating the Effects of Monetary Policy in Australia Using Sign‐restricted Structural Vector Autoregressions," The Economic Record, The Economic Society of Australia, vol. 99(326), pages 329-358, September.
    5. Andrade, Philippe & Gautier, Erwan & Mengus, Eric, 2023. "What matters in households’ inflation expectations?," Journal of Monetary Economics, Elsevier, vol. 138(C), pages 50-68.
    6. D’Amico, Stefania & King, Thomas B., 2023. "What does anticipated monetary policy do?," Journal of Monetary Economics, Elsevier, vol. 138(C), pages 123-139.
    7. Diegel, Max & Nautz, Dieter, 2021. "Long-term inflation expectations and the transmission of monetary policy shocks: Evidence from a SVAR analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    8. Jiang, Meihua & Huang, Yuzhe, 2023. "Is forward guidance an effective policy: A time-varying analysis," Finance Research Letters, Elsevier, vol. 58(PB).
    9. George-Marios Angeletos & Chen Lian, 2018. "Forward Guidance without Common Knowledge," American Economic Review, American Economic Association, vol. 108(9), pages 2477-2512, September.
    10. Ding Dong & Zheng Liu & Pengfei Wang & Min Wei, 2024. "Inflation Disagreement Weakens the Power of Monetary Policy," Working Paper Series 2024-27, Federal Reserve Bank of San Francisco.
    11. Francesco D'Acunto & Daniel Hoang & Maritta Paloviita & Michael Weber, 2019. "Human Frictions to the Transmission of Economic Policy," 2019 Meeting Papers 339, Society for Economic Dynamics.
    12. Adrien Auclert & Ludwig Straub & Matthew Rognlie, 2019. "Micro Jumps, Macro Humps: monetary policy and business cycles in an estimated HANK model," 2019 Meeting Papers 1449, Society for Economic Dynamics.
    13. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    14. Campbell, Jeffrey R. & Ferroni, Filippo & Fisher, Jonas D.M. & Melosi, Leonardo, 2019. "The limits of forward guidance," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 118-134.
    15. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.
    16. Antolín-Díaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan F., 2021. "Structural scenario analysis with SVARs," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 798-815.
    17. Pascal Paul, 2020. "The Time-Varying Effect of Monetary Policy on Asset Prices," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 690-704, October.
    18. Alisdair McKay & Johannes F. Wieland, 2021. "Lumpy Durable Consumption Demand and the Limited Ammunition of Monetary Policy," Econometrica, Econometric Society, vol. 89(6), pages 2717-2749, November.
    19. Müller, Tobias & Christoffel, Kai & Mazelis, Falk & Montes-Galdón, Carlos, 2022. "Disciplining expectations and the forward guidance puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    20. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.

    More about this item

    Keywords

    Bayesian vector autoregression (VAR); Sign restrictions; Information rigidities; Monetary policy; Forward guidance; Inflation expectations;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:moneco:v:132:y:2022:i:c:p:24-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505566 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.