IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v56y2008i2p166-184.html
   My bibliography  Save this article

Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems

Author

Listed:
  • Gaffke, Norbert
  • Pukelsheim, Friedrich

Abstract

When the seats in a parliamentary body are to be allocated proportionally to some given weights, such as vote counts or population data, divisor methods form a prime class to carry out the apportionment. We present a new characterization of divisor methods, via primal and dual optimization problems. The primal goal function is a cumulative product of the discontinuity points of the rounding rule. The variables of the dual problem are the multipliers used to scale the weights before they get rounded. Our approach embraces pervious and impervious divisor methods, and vector and matrix problems.

Suggested Citation

  • Gaffke, Norbert & Pukelsheim, Friedrich, 2008. "Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 166-184, September.
  • Handle: RePEc:eee:matsoc:v:56:y:2008:i:2:p:166-184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(08)00028-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel L. Balinski & Gabrielle Demange, 1989. "Algorithm for Proportional Matrices in Reals and Integers," Post-Print halshs-00585327, HAL.
    2. Gabrielle Demange & Michel L. Balinski, 1989. "An Axiomatic Approach to Proportionality between Matrices," Post-Print halshs-00670952, HAL.
    3. Happacher Max & Pukelsheim Friedrich, 1996. "Rounding Probabilities: Unbiased Multipliers," Statistics & Risk Modeling, De Gruyter, vol. 14(4), pages 373-382, April.
    4. Balinski, Michel & Ramirez, Victoriano, 1999. "Parametric methods of apportionment, rounding and production," Mathematical Social Sciences, Elsevier, vol. 37(2), pages 107-122, March.
    5. Petur Zachariassen & Martin Zachariassen, 2006. "A Comparison of Electoral Formulae for the Faroese Parliament," Studies in Choice and Welfare, in: Bruno Simeone & Friedrich Pukelsheim (ed.), Mathematics and Democracy, pages 235-251, Springer.
    6. M. L. Balinski & G. Demange, 1989. "An Axiomatic Approach to Proportionality Between Matrices," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 700-719, November.
    7. N. Gaffke & F. Pukelsheim, 2008. "Vector and matrix apportionment problems and separable convex integer optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(1), pages 133-159, February.
    8. Sebastian Maier, 2006. "Algorithms for Biproportional Apportionment," Studies in Choice and Welfare, in: Bruno Simeone & Friedrich Pukelsheim (ed.), Mathematics and Democracy, pages 105-116, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oelbermann, Kai-Friederike, 2016. "Alternate Scaling algorithm for biproportional divisor methods," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 25-32.
    2. Svante Janson, 2014. "Asymptotic bias of some election methods," Annals of Operations Research, Springer, vol. 215(1), pages 89-136, April.
    3. Sebastian Maier & Petur Zachariassen & Martin Zachariasen, 2010. "Divisor-Based Biproportional Apportionment in Electoral Systems: A Real-Life Benchmark Study," Management Science, INFORMS, vol. 56(2), pages 373-387, February.
    4. Kerem Akartunalı & Philip A. Knight, 2017. "Network models and biproportional rounding for fair seat allocations in the UK elections," Annals of Operations Research, Springer, vol. 253(1), pages 1-19, June.
    5. Paolo Serafini, 2015. "Certificates of optimality for minimum norm biproportional apportionments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oelbermann, Kai-Friederike, 2016. "Alternate Scaling algorithm for biproportional divisor methods," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 25-32.
    2. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    3. Michel Balinski, 2007. "Equitable representation and recruitment," Annals of Operations Research, Springer, vol. 149(1), pages 27-36, February.
    4. Paolo Serafini, 2015. "Certificates of optimality for minimum norm biproportional apportionments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 1-12, January.
    5. Demange, Gabrielle, 2012. "On party-proportional representation under district distortions," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 181-191.
    6. Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
    7. Sebastian Maier & Petur Zachariassen & Martin Zachariasen, 2010. "Divisor-Based Biproportional Apportionment in Electoral Systems: A Real-Life Benchmark Study," Management Science, INFORMS, vol. 56(2), pages 373-387, February.
    8. Ricca, Federica & Scozzari, Andrea & Simeone, Bruno, 2011. "The give-up problem for blocked regional lists with multi-winners," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 14-24, July.
    9. Gabrielle Demange, 2020. "Resolution rules in a system of financially linked firms," Working Papers hal-02502413, HAL.
    10. Demange, Gabrielle, 2017. "Mutual rankings," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 35-42.
    11. Marjorie B. Gassner, 1991. "Biproportional Delegations," Journal of Theoretical Politics, , vol. 3(3), pages 321-342, July.
    12. Michel L. Balinski & Gabrielle Demange, 1989. "Algorithm for Proportional Matrices in Reals and Integers," Post-Print halshs-00585327, HAL.
    13. Gabrielle Demange, 2018. "New electoral systems and old referendums," PSE Working Papers hal-01852206, HAL.
    14. Gabrielle Demange, 2013. "On Allocating Seats To Parties And Districts: Apportionments," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-14.
    15. MESNARD, Louis de, 1999. "Interpretation of the RAS method : absorption and fabrication effects are incorrect," LATEC - Document de travail - Economie (1991-2003) 9907, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    16. Attila Tasnádi, 2008. "The extent of the population paradox in the Hungarian electoral system," Public Choice, Springer, vol. 134(3), pages 293-305, March.
    17. Isabella Lari & Federica Ricca & Andrea Scozzari, 2014. "Bidimensional allocation of seats via zero-one matrices with given line sums," Annals of Operations Research, Springer, vol. 215(1), pages 165-181, April.
    18. Moulin, Herve, 2017. "Consistent bilateral assignment," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 43-55.
    19. Gabrielle Demange, 2018. "Mechanisms in a Digitalized World," CESifo Working Paper Series 6984, CESifo.
    20. Moulin, Hervé, 2016. "Entropy, desegregation, and proportional rationing," Journal of Economic Theory, Elsevier, vol. 162(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:56:y:2008:i:2:p:166-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.