IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v131y2024icp102-112.html
   My bibliography  Save this article

Some further results on random OBIC rules

Author

Listed:
  • Karmokar, Madhuparna
  • Majumdar, Dipjyoti
  • Roy, Souvik

Abstract

We study the structure of probabilistic voting rules that are ordinal Bayesian incentive compatible (OBIC) with respect to independently distributed prior beliefs that can be considered generic (Majumdar and Sen (2004)). We first identify a class of priors, such that for each prior in that class there exists a probabilistic voting rule that puts a positive probability weight on “compromise” candidates. The class of priors include generic priors. Next, we consider a class of randomized voting rules that have a “finite range”. For this class of rules, we identify an appropriate generic condition on priors such that, any rule in this class is OBIC with respect to a prior satisfying the generic condition if and only if the rule is a random dictatorship.

Suggested Citation

  • Karmokar, Madhuparna & Majumdar, Dipjyoti & Roy, Souvik, 2024. "Some further results on random OBIC rules," Mathematical Social Sciences, Elsevier, vol. 131(C), pages 102-112.
  • Handle: RePEc:eee:matsoc:v:131:y:2024:i:c:p:102-112
    DOI: 10.1016/j.mathsocsci.2024.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016548962400074X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2024.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. d’ASPREMONT, C. & PELEG, B., 1986. "Ordinal Bayesian incentive compatible representations of committees," LIDAM Discussion Papers CORE 1986042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Madhuparna Karmokar & Souvik Roy, 2023. "The structure of (local) ordinal Bayesian incentive compatible random rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 111-152, July.
    3. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2016. "A characterization of single-peaked preferences via random social choice functions," Theoretical Economics, Econometric Society, vol. 11(2), May.
    4. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    5. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    6. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    7. Mishra, Debasis, 2016. "Ordinal Bayesian incentive compatibility in restricted domains," Journal of Economic Theory, Elsevier, vol. 163(C), pages 925-954.
    8. Arunava Sen, 2011. "The Gibbard random dictatorship theorem: a generalization and a new proof," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(4), pages 515-527, December.
    9. Ivan Balbuzanov, 2016. "Convex strategyproofness with an application to the probabilistic serial mechanism," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 511-520, March.
    10. Sulagna Dasgupta & Debasis Mishra, 2022. "Ordinal Bayesian incentive compatibility in random assignment model," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 651-664, December.
    11. Dipjyoti Majumdar & Arunava Sen, 2004. "Ordinally Bayesian Incentive Compatible Voting Rules," Econometrica, Econometric Society, vol. 72(2), pages 523-540, March.
    12. Mennle, Timo & Seuken, Sven, 2021. "Partial strategyproofness: Relaxing strategyproofness for the random assignment problem," Journal of Economic Theory, Elsevier, vol. 191(C).
    13. Majumdar, Dipjyoti & Roy, Souvik, 2021. "Ordinally Bayesian incentive compatible probabilistic voting rules," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 11-27.
    14. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulagna Dasgupta & Debasis Mishra, 2022. "Ordinal Bayesian incentive compatibility in random assignment model," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 651-664, December.
    2. Sulagna Dasgupta & Debasis Mishra, 2020. "Ordinal Bayesian incentive compatibility in random assignment model," Papers 2009.13104, arXiv.org, revised May 2021.
    3. Ehlers, Lars & Majumdar, Dipjyoti & Mishra, Debasis & Sen, Arunava, 2020. "Continuity and incentive compatibility in cardinal mechanisms," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 31-41.
    4. Felix Brandt & Patrick Lederer & René Romen, 2024. "Relaxed notions of Condorcet-consistency and efficiency for strategyproof social decision schemes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 19-55, August.
    5. Felix Brandt & Patrick Lederer, 2024. "Weak Strategyproofness in Randomized Social Choice," Papers 2412.11977, arXiv.org.
    6. Majumdar, Dipjyoti & Roy, Souvik, 2021. "Ordinally Bayesian incentive compatible probabilistic voting rules," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 11-27.
    7. Lê Nguyên Hoang, 2017. "Strategy-proofness of the randomized Condorcet voting system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(3), pages 679-701, March.
    8. Chatterji, Shurojit & Roy, Souvik & Sen, Arunava, 2012. "The structure of strategy-proof random social choice functions over product domains and lexicographically separable preferences," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 353-366.
    9. Brandt, Felix & Lederer, Patrick & Suksompong, Warut, 2023. "Incentives in social decision schemes with pairwise comparison preferences," Games and Economic Behavior, Elsevier, vol. 142(C), pages 266-291.
    10. Madhuparna Karmokar & Souvik Roy, 2023. "The structure of (local) ordinal Bayesian incentive compatible random rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 111-152, July.
    11. Felix Brandt & Patrick Lederer & Ren'e Romen, 2022. "Relaxed Notions of Condorcet-Consistency and Efficiency for Strategyproof Social Decision Schemes," Papers 2201.10418, arXiv.org.
    12. Brandt, Felix & Saile, Christian & Stricker, Christian, 2022. "Strategyproof social choice when preferences and outcomes may contain ties," Journal of Economic Theory, Elsevier, vol. 202(C).
    13. Souvik Roy & Soumyarup Sadhukhan, 2019. "A characterization of random min–max domains and its applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 887-906, November.
    14. Picot, Jérémy & Sen, Arunava, 2012. "An extreme point characterization of random strategy-proof social choice functions: The two alternative case," Economics Letters, Elsevier, vol. 115(1), pages 49-52.
    15. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    16. Mishra, Debasis, 2016. "Ordinal Bayesian incentive compatibility in restricted domains," Journal of Economic Theory, Elsevier, vol. 163(C), pages 925-954.
    17. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    18. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    19. Liu, Peng, 2020. "Local vs. global strategy-proofness: A new equivalence result for ordinal mechanisms," Economics Letters, Elsevier, vol. 189(C).
    20. Cho, Wonki Jo, 2016. "Incentive properties for ordinal mechanisms," Games and Economic Behavior, Elsevier, vol. 95(C), pages 168-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:131:y:2024:i:c:p:102-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.