IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v57y2015icp25-27.html
   My bibliography  Save this article

Probabilistic evaluations: A universal representation for preferences over countable sets

Author

Listed:
  • Knoblauch, Vicki

Abstract

We assign a probabilistic evaluation to a firm as a measure, in the form of a probability distribution over [0,1], of the quality of the firm’s products. When two firms compete to develop a new product, a prospective investor can use the two evaluations to determine which firm is likely to produce a better product. Probabilistic evaluations are shown to generate all binary relations on countable sets.

Suggested Citation

  • Knoblauch, Vicki, 2015. "Probabilistic evaluations: A universal representation for preferences over countable sets," Journal of Mathematical Economics, Elsevier, vol. 57(C), pages 25-27.
  • Handle: RePEc:eee:mateco:v:57:y:2015:i:c:p:25-27
    DOI: 10.1016/j.jmateco.2015.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406815000129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2015.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knoblauch, Vicki, 2013. "A simple voting scheme generates all binary relations on finite sets," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 230-233.
    2. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    3. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    4. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    2. Cesar Martinelli & Mikhail Freer, 2016. "General Revealed Preferences," Working Papers 1059, George Mason University, Interdisciplinary Center for Economic Science, revised Jun 2016.
    3. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    4. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    5. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    6. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    7. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    8. Shaofang Qi, 2016. "A characterization of the n-agent Pareto dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 695-706, March.
    9. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    10. Drapeau, Samuel & Jamneshan, Asgar, 2016. "Conditional preference orders and their numerical representations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 106-118.
    11. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    12. Simone Cerreia-Vioglio & Alfio Giarlotta & Salvatore Greco & Fabio Maccheroni & Massimo Marinacci, 2020. "Rational preference and rationalizable choice," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(1), pages 61-105, February.
    13. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    14. Itzhak Gilboa & Fabio Maccheroni & Massimo Marinacci & David Schmeidler, 2010. "Objective and Subjective Rationality in a Multiple Prior Model," Econometrica, Econometric Society, vol. 78(2), pages 755-770, March.
    15. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    16. José Carlos R. Alcantud & Gianni Bosi & Magalì Zuanon, 2016. "Richter–Peleg multi-utility representations of preorders," Theory and Decision, Springer, vol. 80(3), pages 443-450, March.
    17. YIlmaz, Özgür, 2008. "Utility representation of lower separable preferences," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 389-394, November.
    18. J.C.R. Alcantud, 1999. "Weak utilities from acyclicity," Theory and Decision, Springer, vol. 47(2), pages 185-196, October.
    19. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    20. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.

    More about this item

    Keywords

    Binary relation; Preference representation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:57:y:2015:i:c:p:25-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.