IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v47y2011i4p401-408.html
   My bibliography  Save this article

A von Neumann–Morgenstern representation result without weak continuity assumption

Author

Listed:
  • Delbaen, Freddy
  • Drapeau, Samuel
  • Kupper, Michael

Abstract

In the paradigm of von Neumann and Morgenstern (1947), a representation of affine preferences in terms of an expected utility can be obtained under the assumption of weak continuity. Since the weak topology is coarse, this requirement is a priori far from being negligible. In this work, we replace the assumption of weak continuity by monotonicity. More precisely, on the space of lotteries on an interval of the real line, it is shown that any affine preference order which is monotone with respect to the first stochastic order admits a representation in terms of an expected utility for some nondecreasing utility function. As a consequence, any affine preference order on the subset of lotteries with compact support, which is monotone with respect to the second stochastic order, can be represented in terms of an expected utility for some nondecreasing concave utility function. We also provide such representations for affine preference orders on the subset of those lotteries which fulfill some integrability conditions. The subtleties of the weak topology are illustrated by some examples.

Suggested Citation

  • Delbaen, Freddy & Drapeau, Samuel & Kupper, Michael, 2011. "A von Neumann–Morgenstern representation result without weak continuity assumption," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 401-408.
  • Handle: RePEc:eee:mateco:v:47:y:2011:i:4:p:401-408
    DOI: 10.1016/j.jmateco.2011.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406811000486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2011.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    2. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    2. Harin, Alexander, 2014. "Problems of utility and prospect theories. Certainty effect near certainty," MPRA Paper 61026, University Library of Munich, Germany.
    3. Harin, Alexander, 2015. "Problems of utility and prospect theories. A “certain–uncertain” inconsistency within their experimental methods," MPRA Paper 67911, University Library of Munich, Germany.
    4. Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
    5. Harin, Alexander, 2014. "Problems of utility and prospect theories. A discontinuity of Prelec’s function," MPRA Paper 61027, University Library of Munich, Germany.
    6. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    7. Spinu, Vitalie & Wakker, Peter P., 2013. "Expected utility without continuity: A comment on Delbaen et al. (2011)," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 28-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Balbuzanov, 2016. "Convex strategyproofness with an application to the probabilistic serial mechanism," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 511-520, March.
    2. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning analysis of stock market anomalies under prospect stochastic dominance," Working Papers unige:134101, University of Geneva, Geneva School of Economics and Management.
    3. Ghossoub, Mario, 2011. "Towards a Purely Behavioral Definition of Loss Aversion," MPRA Paper 37628, University Library of Munich, Germany, revised 23 Mar 2012.
    4. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    5. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    6. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    7. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    8. Askoura, Youcef & Billot, Antoine, 2021. "Social decision for a measure society," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    9. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    10. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    11. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    12. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    13. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    14. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    15. Brent A. Gloy & Timothy G. Baker, 2002. "The Importance of Financial Leverage and Risk Aversion in Risk-Management Strategy Selection," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1130-1143.
    16. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    17. He, Wei & Yannelis, Nicholas C., 2015. "Equilibrium theory under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 86-95.
    18. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    19. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    20. Jeongwoo Lee & Jaeok Park, 2019. "Preemptive Entry in Sequential Auctions with Participation Cost," Working papers 2019rwp-141, Yonsei University, Yonsei Economics Research Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:4:p:401-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.