IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v16y1987i2p147-156.html
   My bibliography  Save this article

Some results on the existence of utility functions on path connected spaces

Author

Listed:
  • Monteiro, Paulo Klinger

Abstract

No abstract is available for this item.

Suggested Citation

  • Monteiro, Paulo Klinger, 1987. "Some results on the existence of utility functions on path connected spaces," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 147-156, April.
  • Handle: RePEc:eee:mateco:v:16:y:1987:i:2:p:147-156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4068(87)90004-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehta, Ghanshyam B. & Monteiro, Paulo Klinger, 1996. "Infinite-dimensional utility representation theorems," Economics Letters, Elsevier, vol. 53(2), pages 169-173, November.
    2. Inoue, Tomoki, 2010. "A utility representation theorem with weaker continuity condition," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 122-127, January.
    3. Gori, Michele & Pianigiani, Giulio, 2010. "On the Arrow-Hahn utility representation method," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 282-287, May.
    4. Hervés-Beloso, C. & Monteiro, P.K., 2010. "Strictly monotonic preferences on continuum of goods commodity spaces," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 725-727, September.
    5. Herden, G. & Mehta, G. B., 2004. "The Debreu Gap Lemma and some generalizations," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 747-769, November.
    6. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "The non-existence of a utility function and the structure of non-representable preference relations," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 17-38, February.
    7. Inoue, Tomoki, 2011. "A utility representation theorem with weaker continuity condition," Center for Mathematical Economics Working Papers 401, Center for Mathematical Economics, Bielefeld University.
    8. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    9. Caserta, A. & Giarlotta, A. & Watson, S., 2008. "Debreu-like properties of utility representations," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1161-1179, December.
    10. Toranzo, Margarita Estevez & Beloso, Carlos Herves, 1995. "On the existence of continuous preference orderings without utility representations," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 305-309.
    11. O'Callaghan, Patrick, 2016. "Measuring utility without mixing apples and oranges and eliciting beliefs about stock prices," MPRA Paper 69363, University Library of Munich, Germany.
    12. Arias de Reyna, Juan & Estévez Toranzo, Margarita & Hervés Beloso, Carlos, 1993. "On non representable preferences," UC3M Working papers. Economics 2894, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    14. Mabrouk, Mohamed, 2009. "On the extension of a preorder under translation invariance," MPRA Paper 15407, University Library of Munich, Germany.
    15. Elvio Accinelli, 1999. "Existence of GE: Are the Cases of Non Existence a Cause of Serious Worry?," Documentos de Trabajo (working papers) 0999, Department of Economics - dECON.
    16. Lumley, Thomas & Gillen, Daniel L., 2016. "Characterising transitive two-sample tests," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 118-123.
    17. Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 2004. "Utility functions on locally connected spaces," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 701-711, September.
    18. Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban, 2006. "The existence of utility functions for weakly continuous preferences on a Banach space," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 227-237, March.
    19. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    20. Toranzo, Margarita Estevez & Garcia-Cutrin, Javier & Lopez Lopez, Miguel A., 1995. "A note on the representation of preferences," Mathematical Social Sciences, Elsevier, vol. 29(3), pages 255-262, June.
    21. Candeal, Juan C. & Herves, Carlos & Indurain, Esteban, 1998. "Some results on representation and extension of preferences," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 75-81, January.
    22. Estévez Toranzo, Margarita & Hervés Beloso, Carlos & López López, Miguel A., 1993. "Una nota sobre la representación numérica de relaciones de preferencia," DES - Documentos de Trabajo. Estadística y Econometría. DS 2941, Universidad Carlos III de Madrid. Departamento de Estadística.
    23. Bosi, Gianni & Candeal, Juan Carlos & Indurain, Esteban, 2000. "Continuous representability of homothetic preferences by means of homogeneous utility functions," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 291-298, April.
    24. Banerjee, Kuntal & Mitra, Tapan, 2018. "On Wold’s approach to representation of preferences," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 65-74.
    25. Rustichini, Aldo & Siconolfi, Paolo, 2014. "Dynamic theory of preferences: Habit formation and taste for variety," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 55-68.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:16:y:1987:i:2:p:147-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.