IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v90y2013icp162-177.html
   My bibliography  Save this article

Overview of analytical models of permanent magnet electrical machines for analysis and design purposes

Author

Listed:
  • Tiegna, Huguette
  • Amara, Yacine
  • Barakat, Georges

Abstract

Generally, accurate modelling of electrical machines requires the use of finite-element method. However, FE analysis is too time consuming, especially at firsts design stages, from the point of view of engineers working in R&D departments in the electrical machine industry. To reduce pre-design stages duration, analytical models are often preferred. Two types of analytical models are often used: magnetic equivalent circuits (MEC) and analytical models based on the formal solution of Maxwell's equations in constant permeability regions. However, MEC method is not as generic as the finite element method. In fact, even in the case of a given structure geometry, MEC method has to be adapted if the geometric parameters vary in a large scale. Analytical models based on the formal solution of Maxwell's equations help overcome aforementioned problem. This paper is intended as a tutorial overview based on a review of the state of the art, describing recent developments in the field of analytical modelling of permanent magnet machines.

Suggested Citation

  • Tiegna, Huguette & Amara, Yacine & Barakat, Georges, 2013. "Overview of analytical models of permanent magnet electrical machines for analysis and design purposes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 162-177.
  • Handle: RePEc:eee:matcom:v:90:y:2013:i:c:p:162-177
    DOI: 10.1016/j.matcom.2012.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2012.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chebak, Ahmed & Viarouge, Philippe & Cros, Jérôme, 2010. "Optimal design of a high-speed slotless permanent magnet synchronous generator with soft magnetic composite stator yoke and rectifier load," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 239-251.
    2. Goby, F. & Razek, A., 1987. "Numerical calculation of electromagnetic forces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 29(5), pages 343-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yerai Moreno & Gaizka Almandoz & Aritz Egea & Patxi Madina & Ana Julia Escalada, 2020. "Multi-Physics Tool for Electrical Machine Sizing," Energies, MDPI, vol. 13(7), pages 1-18, April.
    2. Popoli, Arturo & Cristofolini, Andrea & Sandrolini, Leonardo, 2021. "A numerical model for the calculation of electromagnetic interference from power lines on nonparallel underground pipelines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 221-233.
    3. Malé, Gael & Lubin, Thierry & Mezani, Smail & Lévêque, Jean, 2013. "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 230-243.
    4. Sprangers, R.L.J. & Paulides, J.J.H. & Gysen, B.L.J. & Lomonova, E.A., 2017. "A fast semi-analytical model for the slotted structure of induction motors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 316-327.
    5. Sergeant, Peter & Vansompel, Hendrik & Dupré, Luc, 2016. "Influence of stator slot openings on losses and torque in axial flux permanent magnet machines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 22-31.
    6. Ouagued, Sofiane & Amara, Yacine & Barakat, Georges, 2016. "Comparison of hybrid analytical modelling and reluctance network modelling for pre-design purposes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 3-21.
    7. Xinwen Chen & Hanying Jiang & Zhaohua Li & Kun Liang, 2020. "Modelling and Measurement of a Moving Magnet Linear Motor for Linear Compressor," Energies, MDPI, vol. 13(15), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    2. Ouagued, Sofiane & Amara, Yacine & Barakat, Georges, 2016. "Comparison of hybrid analytical modelling and reluctance network modelling for pre-design purposes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 3-21.
    3. Malé, Gael & Lubin, Thierry & Mezani, Smail & Lévêque, Jean, 2013. "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 230-243.
    4. Nguyen, Phi Hung & Hoang, Emmanuel & Gabsi, Mohamed, 2013. "Bi-criteria optimization design of an interior permanent magnet synchronous machine for a hybrid electric vehicle application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 178-191.
    5. Hannon, Bert & Sergeant, Peter & Dupré, Luc, 2016. "Torque and torque components in high-speed permanent-magnet synchronous machines with a shielding cylinder," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 70-80.
    6. Stumpf, Péter & Járdán, Rafael K. & Nagy, István, 2013. "Analysis of the impact of space vector modulation techniques on the operation of ultrahigh speed induction machines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 132-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:90:y:2013:i:c:p:162-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.