IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v86y2012icp67-77.html
   My bibliography  Save this article

LMI-based stability analysis of impulsive high-order Hopfield-type neural networks

Author

Listed:
  • Xu, Bingji
  • Xu, Yuan
  • He, Linman

Abstract

This paper investigates the asymptotic stability of a class of impulsive high-order neural networks, which can be considered as an expansion of Hopfield neural networks. By employing Lyapunov functions and linear matrix inequality (LMI) technique, sufficient conditions that guarantee the global asymptotic stability of the equilibrium point are derived. The proposed criteria are easily verified and possess many adjustable parameters, which provide flexibility for the analysis of the neural networks. Finally, two examples are given to show the effectiveness of the proposed results.

Suggested Citation

  • Xu, Bingji & Xu, Yuan & He, Linman, 2012. "LMI-based stability analysis of impulsive high-order Hopfield-type neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 86(C), pages 67-77.
  • Handle: RePEc:eee:matcom:v:86:y:2012:i:c:p:67-77
    DOI: 10.1016/j.matcom.2011.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411000796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamad, Sannay, 2007. "Exponential stability in Hopfield-type neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 456-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yu & Feng, Zhi Guo & Yang, Xinsong & Alsaadi, Fuad E. & Ahmad, Bashir, 2018. "Finite-time stabilization for a class of nonlinear systems via optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 14-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    2. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    3. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    4. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    5. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    6. He, Zhilong & Li, Chuandong & Li, Hongfei & Zhang, Qiangqiang, 2020. "Global exponential stability of high-order Hopfield neural networks with state-dependent impulses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    7. Zhang, Yinping, 2009. "Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1760-1763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:86:y:2012:i:c:p:67-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.