IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2012i6p1069-1078.html
   My bibliography  Save this article

Hidden solitons in the Zabusky–Kruskal experiment: Analysis using the periodic, inverse scattering transform

Author

Listed:
  • Christov, Ivan C.

Abstract

Recent numerical work on the Zabusky–Kruskal experiment has revealed, amongst other things, the existence of hidden solitons in the wave profile. Here, using Osborne’s nonlinear Fourier analysis, which is based on the periodic, inverse scattering transform, the hidden soliton hypothesis is corroborated, and the exact number of solitons, their amplitudes and their reference level is computed. Other “less nonlinear” oscillation modes, which are not solitons, are also found to have nontrivial energy contributions over certain ranges of the dispersion parameter. In addition, the reference level is found to be a non-monotone function of the dispersion parameter. Finally, in the case of large dispersion, we show that the one-term nonlinear Fourier series yields a very accurate approximate solution in terms of Jacobian elliptic functions.

Suggested Citation

  • Christov, Ivan C., 2012. "Hidden solitons in the Zabusky–Kruskal experiment: Analysis using the periodic, inverse scattering transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(6), pages 1069-1078.
  • Handle: RePEc:eee:matcom:v:82:y:2012:i:6:p:1069-1078
    DOI: 10.1016/j.matcom.2010.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410001849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilison, Lauri & Salupere, Andrus, 2009. "Propagation of sech2-type solitary waves in hierarchical KdV-type systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3314-3327.
    2. Zabusky, N.J. & Silver, D. & Fernandez, V., 1996. "Visiometrics and modeling in computational fluid dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 40(3), pages 181-191.
    3. Salupere, A. & Engelbrecht, J. & Ilison, O. & Ilison, L., 2005. "On solitons in microstructured solids and granular materials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 502-513.
    4. Salupere, A. & Engelbrecht, J. & Peterson, P., 2003. "On the long-time behaviour of soliton ensembles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(1), pages 137-147.
    5. Osborne, A.R., 1994. "Automatic algorithm for the numerical inverse scattering transform of the Korteweg–de Vries equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 37(4), pages 431-450.
    6. Christov, Ivan, 2009. "Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 192-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamm, Kert & Salupere, Andrus, 2012. "On the propagation of 1D solitary waves in Mindlin-type microstructured solids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(7), pages 1308-1320.
    2. Ilison, Lauri & Salupere, Andrus, 2009. "Propagation of sech2-type solitary waves in hierarchical KdV-type systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3314-3327.
    3. Prins, Peter J. & Wahls, Sander, 2022. "Reliable computation of the eigenvalues of the discrete KdV spectrum," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    4. Christov, Ivan, 2009. "Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 192-201.
    5. Salupere, Andrus, 2016. "On hidden solitons in KdV related systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 252-262.
    6. Ilison, O. & Salupere, A., 2006. "On the propagation of solitary pulses in microstructured materials," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 202-214.
    7. Yan, Guangwu & Zhang, Jianying, 2009. "A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1554-1565.
    8. You, Xiangcheng & Xu, Hang & Sun, Qiang, 2022. "Analysis of BBM solitary wave interactions using the conserved quantities," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Mart Ratas & Jüri Majak & Andrus Salupere, 2021. "Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method," Mathematics, MDPI, vol. 9(21), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2012:i:6:p:1069-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.