IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v127y2016icp252-262.html
   My bibliography  Save this article

On hidden solitons in KdV related systems

Author

Listed:
  • Salupere, Andrus

Abstract

It is well known that a train of solitons can emerge from the harmonic initial wave in case of the Korteweg–de Vries (KdV) or KdV related evolution equations. Analysis of results of numerical experiments demonstrates that besides clearly visible solitons, which interact with each other, there exist also solitons that either are visible only for a short time due to the fluctuation of the reference level or can be detected only by their influence on other solitons, i.e., by specific changes in the amplitude curves and in the soliton trajectories. Recently I. Christov demonstrated that for integrable PDEs, like the KdV equation, one can apply the periodic inverse scattering transform (PIST) and distinguish “true” soliton modes and modes that fall “in-between” solitons and radiation. However, in nonintegrable cases one cannot apply the PIST and therefore distinction between “true” solitons and nonlinear waves that have solitonic behavior seems to be complicated or even impossible. The existence of hidden solitons in the KdV related systems is discussed in the present paper.

Suggested Citation

  • Salupere, Andrus, 2016. "On hidden solitons in KdV related systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 252-262.
  • Handle: RePEc:eee:matcom:v:127:y:2016:i:c:p:252-262
    DOI: 10.1016/j.matcom.2014.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847541400202X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christov, Ivan, 2009. "Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 192-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prins, Peter J. & Wahls, Sander, 2022. "Reliable computation of the eigenvalues of the discrete KdV spectrum," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    2. Christov, Ivan C., 2012. "Hidden solitons in the Zabusky–Kruskal experiment: Analysis using the periodic, inverse scattering transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(6), pages 1069-1078.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:127:y:2016:i:c:p:252-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.