IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2012i10p1841-1852.html
   My bibliography  Save this article

Random mixed hyperbolic models: Numerical analysis and computing

Author

Listed:
  • Jódar, L.
  • Cortés, J.-C.
  • Villafuerte, L.

Abstract

This paper deals with the construction of reliable numerical solutions of mixed problems for hyperbolic second order partial differential models with random information in the variable coefficients of the partial differential equation and in the initial data. Using random difference schemes a random discrete eigenfunctions method is developed in order to construct a discrete approximating stochastic process. Mean square consistency of the random difference scheme is treated and mean square stability of the numerical solution is studied and illustrated with examples. Statistical moments of the numerical solution are also computed.

Suggested Citation

  • Jódar, L. & Cortés, J.-C. & Villafuerte, L., 2012. "Random mixed hyperbolic models: Numerical analysis and computing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(10), pages 1841-1852.
  • Handle: RePEc:eee:matcom:v:82:y:2012:i:10:p:1841-1852
    DOI: 10.1016/j.matcom.2011.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411000309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cortés, J.C. & Jódar, L. & Villafuerte, L. & Villanueva, R.J., 2007. "Computing mean square approximations of random diffusion models with source term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 44-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arenas, Abraham J. & González-Parra, Gilberto & Jódar, Lucas, 2010. "Randomness in a mathematical model for the transmission of respiratory syncytial virus (RSV)," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 971-981.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2012:i:10:p:1841-1852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.