IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v76y2007i1p99-108.html
   My bibliography  Save this article

On discrete maximum principles for nonlinear elliptic problems

Author

Listed:
  • Karátson, János
  • Korotov, Sergey
  • Křížek, Michal

Abstract

In order to have reliable numerical simulations it is very important to preserve basic qualitative properties of solutions of mathematical models by computed approximations. For scalar second-order elliptic equations, one of such properties is the maximum principle. In our work, we give a short review of the most important results devoted to discrete counterparts of the maximum principle (called discrete maximum principles, DMPs), mainly in the framework of the finite element method, and also present our own recent results on DMPs for a class of second-order nonlinear elliptic problems with mixed boundary conditions.

Suggested Citation

  • Karátson, János & Korotov, Sergey & Křížek, Michal, 2007. "On discrete maximum principles for nonlinear elliptic problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 99-108.
  • Handle: RePEc:eee:matcom:v:76:y:2007:i:1:p:99-108
    DOI: 10.1016/j.matcom.2007.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540700016X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Casas & Mariano Mateos, 2012. "Numerical approximation of elliptic control problems with finitely many pointwise constraints," Computational Optimization and Applications, Springer, vol. 51(3), pages 1319-1343, April.
    2. Vejchodský, Tomáš & Korotov, Sergey & Hannukainen, Antti, 2010. "Discrete maximum principle for parabolic problems solved by prismatic finite elements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(8), pages 1758-1770.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:76:y:2007:i:1:p:99-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.