IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v72y2006i2p195-200.html
   My bibliography  Save this article

Lattice Boltzmann simulation of natural convection in porous media

Author

Listed:
  • Seta, Takeshi
  • Takegoshi, Eishun
  • Okui, Kenichi

Abstract

This paper confirms the reliability and the computational efficiency of the lattice Boltzmann method in simulating natural convection in porous media at the representative elementary volume scale. The influence of porous media is considered by introducing the porosity to the equilibrium distribution function and by adding a force term to the evolution equation. The temperature field is simulated by a simplified thermal energy distribution function which neglects the compression work done by the pressure and the viscous heat dissipation. A comprehensive parametric study of natural convective flows is carried out for various values of Rayleigh number, of Darcy number, and of porosity. The comparison of solutions between the present model and earlier studies shows good quantitative agreement for the whole range of Darcy and Rayleigh numbers.

Suggested Citation

  • Seta, Takeshi & Takegoshi, Eishun & Okui, Kenichi, 2006. "Lattice Boltzmann simulation of natural convection in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 72(2), pages 195-200.
  • Handle: RePEc:eee:matcom:v:72:y:2006:i:2:p:195-200
    DOI: 10.1016/j.matcom.2006.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475406001455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2006.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javadzadegan, Ashkan & Joshaghani, Mohammad & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2020. "Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Mahmoudi, Ahmed, 2019. "A scale analysis to study melting process driven by natural convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 430-447.
    3. Liu, Qing & He, Ya-Ling, 2017. "Lattice Boltzmann simulations of convection heat transfer in porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 742-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:72:y:2006:i:2:p:195-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.