IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v70y2005i1p9-21.html
   My bibliography  Save this article

On the optimal Halton sequence

Author

Listed:
  • Chi, H.
  • Mascagni, M.
  • Warnock, T.

Abstract

Quasi-Monte Carlo methods are a variant of ordinary Monte Carlo methods that employ highly uniform quasirandom numbers in place of Monte Carlo’s pseudorandom numbers. Clearly, the generation of appropriate high-quality quasirandom sequences is crucial to the success of quasi-Monte Carlo methods. The Halton sequence is one of the standard (along with (t,s)-sequences and lattice points) low-discrepancy sequences, and one of its important advantages is that the Halton sequence is easy to implement due to its definition via the radical inverse function. However, the original Halton sequence suffers from correlations between radical inverse functions with different bases used for different dimensions. These correlations result in poorly distributed two-dimensional projections. A standard solution to this phenomenon is to use a randomized (scrambled) version of the Halton sequence. An alternative approach to this is to find an optimal Halton sequence within a family of scrambled sequences. This paper presents a new algorithm for finding an optimal Halton sequence within a linear scrambling space. This optimal sequence is numerically tested and shown empirically to be far superior to the original. In addition, based on analysis and insight into the correlations between dimensions of the Halton sequence, we illustrate why our algorithm is efficient for breaking these correlations. An overview of various algorithms for constructing various optimal Halton sequences is also given.

Suggested Citation

  • Chi, H. & Mascagni, M. & Warnock, T., 2005. "On the optimal Halton sequence," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(1), pages 9-21.
  • Handle: RePEc:eee:matcom:v:70:y:2005:i:1:p:9-21
    DOI: 10.1016/j.matcom.2005.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540500087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2005.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mascagni Michael & Chi Hongmei, 2004. "On the Scrambled Halton Sequence," Monte Carlo Methods and Applications, De Gruyter, vol. 10(3-4), pages 435-442, December.
    2. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vandewoestyne, Bart & Chi, Hongmei & Cools, Ronald, 2010. "Computational investigations of scrambled Faure sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 522-535.
    2. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
    3. Chi Hongmei, 2013. "Generation of parallel modified Kronecker sequences," Monte Carlo Methods and Applications, De Gruyter, vol. 19(4), pages 261-271, December.
    4. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    5. Dong, Gracia Y. & Lemieux, Christiane, 2022. "Dependence properties of scrambled Halton sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 240-262.
    6. Bayousef Manal & Mascagni Michael, 2019. "A computational investigation of the optimal Halton sequence in QMC applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 187-207, September.
    7. Chi, Hongmei & Beerli, Peter, 2014. "Quasi-Monte Carlo method in population genetics parameter estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 33-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    2. George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
    3. John Rust & Joseph Traub & Henryk Wozniakowski, 1999. "No Curse of Dimensionality for Contraction Fixed Points Even in the Worst Case," Computational Economics 9902001, University Library of Munich, Germany.
    4. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    5. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    6. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    7. Eichler Andreas & Leobacher Gunther & Zellinger Heidrun, 2011. "Calibration of financial models using quasi-Monte Carlo," Monte Carlo Methods and Applications, De Gruyter, vol. 17(2), pages 99-131, January.
    8. Xiaoqun Wang, 2006. "On the Effects of Dimension Reduction Techniques on Some High-Dimensional Problems in Finance," Operations Research, INFORMS, vol. 54(6), pages 1063-1078, December.
    9. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    10. Krupenev, Dmitry & Boyarkin, Denis & Iakubovskii, Dmitrii, 2020. "Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    12. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    13. Gonzalez, Jorge & Tuerlinckx, Francis & De Boeck, Paul & Cools, Ronald, 2006. "Numerical integration in logistic-normal models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1535-1548, December.
    14. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    15. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    16. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    17. Marco Bianchetti & Sergei Kucherenko & Stefano Scoleri, 2015. "Pricing and Risk Management with High-Dimensional Quasi Monte Carlo and Global Sensitivity Analysis," Papers 1504.02896, arXiv.org.
    18. Siegl, Thomas & F. Tichy, Robert, 2000. "Ruin theory with risk proportional to the free reserve and securitization," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 59-73, February.
    19. Nicola Cufaro Petroni & Piergiacomo Sabino, 2013. "Pricing and Hedging Asian Basket Options with Quasi-Monte Carlo Simulations," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 147-163, March.
    20. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:70:y:2005:i:1:p:9-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.