IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v68y2005i4p339-354.html
   My bibliography  Save this article

Optimal harvesting strategies for a multi-cycle and multi-pond shrimp operation: A practical network model

Author

Listed:
  • Yu, Run
  • Leung, PingSun

Abstract

In this paper, we introduce a network formulation of the optimal scheduling model for a multi-cycle and multi-pond shrimp operation grounded on the original optimal harvesting theory for a single production unit. The optimal schedule comprises the harvesting and restocking time that maximizes total profit throughout the planning horizon, bounded by the underlying biological and economic conditions. The model takes into account the information such as harvest size distribution, seasonality of price, temperature and weight-dependent growth, and labor force and market demand constraints. We applied the model to an existing shrimp operation in Hawaii with 40 one-acre ponds and generated the optimal schedule for a year that maximizes overall production. The model schedule is found to be able to increase total production by 5% when compared to the schedule generated using an “educated” trial-and-error procedure currently practiced by this operation. Further insights for this multi-cycle and multi-pond scheduling problem were also generated through several alternate simulations. It is found that labor force and market demand constraints are the key factors in scheduling multi-cycle and multi-pond shrimp operations.

Suggested Citation

  • Yu, Run & Leung, PingSun, 2005. "Optimal harvesting strategies for a multi-cycle and multi-pond shrimp operation: A practical network model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(4), pages 339-354.
  • Handle: RePEc:eee:matcom:v:68:y:2005:i:4:p:339-354
    DOI: 10.1016/j.matcom.2005.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475405000492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2005.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. PingSun Leung & Hochman, Eithan & Rowland, Lawrence W. & Wyban, James A., 1990. "Modeling shrimp production and harvesting schedules," Agricultural Systems, Elsevier, vol. 32(3), pages 233-249.
    2. Leung, PingSun & Shang, Yung C., 1989. "Modeling prawn production management system: A dynamic Markov decision approach," Agricultural Systems, Elsevier, vol. 29(1), pages 5-20.
    3. Oscar J. Cacho & Henry Kinnucan & Upton Hatch, 1991. "Optimal Control of Fish Growth," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(1), pages 174-183.
    4. Forsberg, Odd Inge, 1996. "Optimal stocking and harvesting of size-structured farmed fish: A multi-period linear programming approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 42(2), pages 299-305.
    5. Hean, Robyn L., 1994. "An Optimal Management Model For Intensive Aquaculture - An Application In Atlantic Salmon," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 38(1), pages 1-17, April.
    6. Robyn L. Hean, 1994. "An Optimal Management Model For Intensive Aquaculture — An Application In Atlantic Salmon," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 38(1), pages 31-47, April.
    7. Larry Karp & Arye Sadeh & Wade L. Griffin, 1986. "Cycles in Agricultural Production: The Case of Aquaculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(3), pages 553-561.
    8. Eithan Hochman & PingSun Leung & Lawrence W. Rowland & James A. Wyban, 1990. "Optimal Scheduling in Shrimp Mariculture: A Stochastic Growing Inventory Problem," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(2), pages 382-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng-Sheng YOU & Yi-Chih HSIEH, 2018. "A study of production and harvesting planning for the chicken industry," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(7), pages 316-327.
    2. Yu, Run & Leung, PingSun, 2009. "Optimal harvest time in continuous aquacultural production: The case of nonhomogeneous production cycles," International Journal of Production Economics, Elsevier, vol. 117(2), pages 267-270, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Run & Leung, PingSun, 2009. "Optimal harvest time in continuous aquacultural production: The case of nonhomogeneous production cycles," International Journal of Production Economics, Elsevier, vol. 117(2), pages 267-270, February.
    2. Frank Jensen & Rasmus Nielsen & Henrik Meilby, 2023. "Regulation of aquaculture production," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 161-204, April.
    3. Sadeh, Arye & Griffin, Wade L., 1997. "Value of feedback in agricultural decisions," Agricultural Systems, Elsevier, vol. 53(2-3), pages 285-301.
    4. Forsberg, Odd Inge, 1996. "Optimal stocking and harvesting of size-structured farmed fish: A multi-period linear programming approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 42(2), pages 299-305.
    5. Kazmierczak, Richard F., Jr. & Caffey, Rex H., 1996. "The Bioeconomics Of Recirculating Aquaculture Systems," Station Bulletins 31681, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    6. Hean, Robyn L. & Cacho, Oscar J., 1999. "Optimal Management Of Giant-Clam Farming In Solomon Islands," Working Papers 12935, University of New England, School of Economics.
    7. Domínguez-May, Roger & Poot-López, Gaspar R. & Hernández, Juan & Gasca-Leyva, Eucario, 2020. "Dynamic optimal ration size in tilapia culture: Economic and environmental considerations," Ecological Modelling, Elsevier, vol. 420(C).
    8. Richter, K. & Pakhomova, N.V. & Dobos, I., 2006. "A Wagner/Whitin natural resource stock control model," International Journal of Production Economics, Elsevier, vol. 104(2), pages 419-426, December.
    9. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    10. Hean, Robyn L., 1994. "An Optimal Management Model For Intensive Aquaculture - An Application In Atlantic Salmon," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 38(1), pages 1-17, April.
    11. Lawrence, John D. & Kaylen, Michael S., 1990. "Risk Management For Livestock Producers: Hedging And Contract Production," Staff Papers 13496, University of Minnesota, Department of Applied Economics.
    12. Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
    13. Hary, I., 2004. "Derivation of steady state herd productivity using stage-structured population models and mathematical programming," Agricultural Systems, Elsevier, vol. 81(2), pages 133-152, August.
    14. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    15. Bjorndal, Trond & Lane, Daniel E. & Weintraub, Andres, 2004. "Operational research models and the management of fisheries and aquaculture: A review," European Journal of Operational Research, Elsevier, vol. 156(3), pages 533-540, August.
    16. Peng-Sheng YOU & Yi-Chih HSIEH, 2018. "A study of production and harvesting planning for the chicken industry," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(7), pages 316-327.
    17. Kjell Holmåker & Thomas Sterner, 1999. "Growth or environmental concern: which comes first? Optimal control with pure stock pollutants," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(3), pages 167-185, September.
    18. Nikolaos Mykoniatis & Richard Ready, 2016. "Spatial Harvest Regimes for a Sedentary Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 357-387, October.
    19. Hidekazu Yoshioka, 2023. "Optimal Aquaculture Planning While Accounting for the Size Spectrum," SN Operations Research Forum, Springer, vol. 4(3), pages 1-34, September.
    20. Juan Hernández Guerra & Miguel León Santana & Carmelo León González, 2003. "Optiminación Dinámica en la gestión del cultivo de la dorada en la región mediterranea y canaria," Documentos de trabajo conjunto ULL-ULPGC 2003-05, Facultad de Ciencias Económicas de la ULPGC.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:68:y:2005:i:4:p:339-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.