IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v64y2004i1p63-78.html
   My bibliography  Save this article

Bayesian estimation of smooth transition GARCH model using Gibbs sampling

Author

Listed:
  • Wago, Hajime

Abstract

Research into time series models of changing variance and covariance, which is often called volatility model, has exploded in the last 10 years. Financial series are characterized by periods of large volatility followed by periods of relative quietness. This type of clustering led to the idea that volatility is predictable. The ARCH and GARCH models were quite successful in predicting volatility compared to more traditional methods. But better predictions are obtained when asymmetries and nonlinearities in the response of volatility to news arriving in the market are taken into account. In this paper we propose a new kind of asymmetric GARCH in which the conditional variance obeys two different regimes with a smooth transition function. In this model, the conditional variance reacts differently to negative and positive shocks and its magnitude on shocks have separate effects. As financial data have very often a high frequency of observation, smooth transition seems a priori better than an abrupt transition. The change of regime occurs when the residuals cross the threshold zero. This threshold GARCH models can be generalized using a smooth transition function FT(η,st) taking continuous values between zero and one. We treat the joint point t* and the speed of adjustment η to be two unknown parameters.

Suggested Citation

  • Wago, Hajime, 2004. "Bayesian estimation of smooth transition GARCH model using Gibbs sampling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 63-78.
  • Handle: RePEc:eee:matcom:v:64:y:2004:i:1:p:63-78
    DOI: 10.1016/S0378-4754(03)00121-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475403001216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0378-4754(03)00121-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael McAleer & Les Oxley, 2002. "The Econometrics of Financial Time Series," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 237-243, July.
    2. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 41-61, Suppl. De.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    7. Tsurumi, Hiroki & Wago, Hajime & Ilmakunnas, Pekka, 1986. "Gradual switching multivariate regression models with stochastic cross-equational constraints and an application to the Klem translog production model," Journal of Econometrics, Elsevier, vol. 31(3), pages 235-253, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    10. LUBRANO, Michel, 1998. "Smooth transition GARCH models: a Bayesian perspective," LIDAM Discussion Papers CORE 1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
    12. repec:bla:jecsur:v:16:y:2002:i:3:p:245-69 is not listed on IDEAS
    13. W. K. Li & Shiqing Ling & Michael McAleer, 2002. "Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    14. Felix Chan & Michael McAleer, 2002. "Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 509-534.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    2. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    3. Glen Livingston & Darfiana Nur, 2020. "Bayesian inference of smooth transition autoregressive (STAR)(k)–GARCH(l, m) models," Statistical Papers, Springer, vol. 61(6), pages 2449-2482, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. LUBRANO, Michel, 1998. "Smooth transition GARCH models: a Bayesian perspective," LIDAM Discussion Papers CORE 1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    4. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    6. Halunga, Andreea G. & Orme, Chris D., 2009. "First-Order Asymptotic Theory For Parametric Misspecification Tests Of Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 364-410, April.
    7. Oscar Andrés Espinosa Acuna & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 17147, Universidad del Norte.
    8. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    9. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    12. Cathy W. S. Chen & Richard H. Gerlach & Ann M. H. Lin, 2010. "Falling and explosive, dormant, and rising markets via multiple‐regime financial time series models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(1), pages 28-49, January.
    13. repec:lan:wpaper:2596 is not listed on IDEAS
    14. repec:lan:wpaper:2373 is not listed on IDEAS
    15. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    16. Oscar Andrés Espinosa Acuna & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 17172, Universidad del Norte.
    17. Li, Ming-Yuan Leon, 2008. "Clarifying the dynamics of the relationship between option and stock markets using the threshold vector error correction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 511-520.
    18. repec:lan:wpaper:2454 is not listed on IDEAS
    19. repec:lan:wpaper:2375 is not listed on IDEAS
    20. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    22. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478, arXiv.org.
    23. Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
    24. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:64:y:2004:i:1:p:63-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.