IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v62y2003i3p315-322.html
   My bibliography  Save this article

An improved simulation method for pricing high-dimensional American derivatives

Author

Listed:
  • Boyle, Phelim P.
  • Kolkiewicz, Adam W.
  • Tan, Ken Seng

Abstract

In this paper, we propose an estimator for pricing high-dimensional American-style options and show that asymptotically its upper bias converges to zero. An advantage of the proposed estimator is that when combined with low discrepancy sequences, it exhibits a superior rate of convergence. Numerical examples are conducted to demonstrate its efficiency.

Suggested Citation

  • Boyle, Phelim P. & Kolkiewicz, Adam W. & Tan, Ken Seng, 2003. "An improved simulation method for pricing high-dimensional American derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 315-322.
  • Handle: RePEc:eee:matcom:v:62:y:2003:i:3:p:315-322
    DOI: 10.1016/S0378-4754(02)00248-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475402002483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0378-4754(02)00248-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    2. Broadie, M. & Glasserman, P., 1997. "A Sotchastic Mesh Method for Pricing High-Dimensional American Options," Papers 98-04, Columbia - Graduate School of Business.
    3. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    4. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Other publications TiSEM 416a6d43-3466-47e0-b656-d, Tilburg University, School of Economics and Management.
    2. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    3. Doan, Viet_Dung & Gaikwad, Abhijeet & Bossy, Mireille & Baude, Françoise & Stokes-Rees, Ian, 2010. "Parallel pricing algorithms for multi-dimensional Bermudan/American options using Monte Carlo methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 568-577.
    4. Berridge, S.J. & Schumacher, J.M., 2004. "Pricing High-Dimensional American Options Using Local Consistency Conditions," Other publications TiSEM 8c8de631-5039-4eec-a965-3, Tilburg University, School of Economics and Management.
    5. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    2. Yen Thuan Trinh & Bernard Hanzon, 2022. "Option Pricing and CVA Calculations using the Monte Carlo-Tree (MC-Tree) Method," Papers 2202.00785, arXiv.org.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    5. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    6. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    7. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
    8. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    9. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    10. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    11. Chi H. Truong, 2014. "A Two Factor Model for Water Prices and Its Implications for Evaluating Real Options and Other Water Price Derivatives," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 23-45, March.
    12. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    15. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    16. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    17. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    18. Garnier, Ernesto & Madlener, Reinhard, 2014. "Balancing Forecast Errors in Continuous-Trade Intraday Markets," FCN Working Papers 2/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    19. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2016. "The spark spread and clean spark spread option based valuation of a power plant with multiple turbines," Energy Economics, Elsevier, vol. 59(C), pages 314-327.
    20. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:62:y:2003:i:3:p:315-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.