IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v59y2002i5p431-436.html
   My bibliography  Save this article

Three-parametrical harmonization model in project management by means of simulation

Author

Listed:
  • Menipaz, Ehud
  • Ben-Yair, Avner

Abstract

A PERT-COST type project with random activity duration is considered. The project comprises several essential parameters which practically define the quality of the project as a whole:

Suggested Citation

  • Menipaz, Ehud & Ben-Yair, Avner, 2002. "Three-parametrical harmonization model in project management by means of simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(5), pages 431-436.
  • Handle: RePEc:eee:matcom:v:59:y:2002:i:5:p:431-436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540100430X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golenko-Ginzburg, Dimitri, 1993. "A two-level decision-making model for controlling stochastic projects," International Journal of Production Economics, Elsevier, vol. 32(1), pages 117-127, August.
    2. S. Arisawa & S. E. Elmaghraby, 1972. "Optimal Time-Cost Trade-Offs in GERT Networks," Management Science, INFORMS, vol. 18(11), pages 589-599, July.
    3. James E. Kelley, 1961. "Critical-Path Planning and Scheduling: Mathematical Basis," Operations Research, INFORMS, vol. 9(3), pages 296-320, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorota Kuchta & Stanisław Stanek, 2020. "Application of Simulation to Selecting Project Strategy for Autonomous Research Projects at Public Universities," Administrative Sciences, MDPI, vol. 10(1), pages 1-23, March.
    2. Menipaz, Ehud & Ben-Yair, Avner, 2002. "Harmonization simulation model for managing several stochastic projects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(1), pages 61-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laslo, Zohar & Keren, Baruch & Ilani, Hagai, 2008. "Minimizing task completion time with the execution set method," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1513-1519, June.
    2. Mehrnoosh Zohrehvandi & Shakib Zohrehvandi & Mohammad Khalilzadeh & Maghsoud Amiri & Fariborz Jolai & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2024. "A Multi-Objective Mathematical Programming Model for Project-Scheduling Optimization Considering Customer Satisfaction in Construction Projects," Mathematics, MDPI, vol. 12(2), pages 1-16, January.
    3. A B Hafızoğlu & M Azizoğlu, 2010. "Linear programming based approaches for the discrete time/cost trade-off problem in project networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 676-685, April.
    4. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    5. Tao, Liangyan & Wu, Desheng & Liu, Sifeng & Lambert, James H., 2017. "Schedule risk analysis for new-product development: The GERT method extended by a characteristic function," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 464-473.
    6. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    7. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    8. Manuel A. Alba Martínez & Jean-François Cordeau & Mauro Dell'Amico & Manuel Iori, 2013. "A Branch-and-Cut Algorithm for the Double Traveling Salesman Problem with Multiple Stacks," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 41-55, February.
    9. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    10. Wauters, Mathieu & Vanhoucke, Mario, 2017. "A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1097-1111.
    11. Golenko-Ginzburg, Dimitri & Gonik, Aharon, 1998. "High performance heuristic algorithm for controlling stochastic network projects," International Journal of Production Economics, Elsevier, vol. 54(3), pages 235-245, May.
    12. Gehring, Marco & Volk, Rebekka & Schultmann, Frank, 2022. "On the integration of diverging material flows into resource‐constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1071-1087.
    13. Siqian Shen & J. Cole Smith & Shabbir Ahmed, 2010. "Expectation and Chance-Constrained Models and Algorithms for Insuring Critical Paths," Management Science, INFORMS, vol. 56(10), pages 1794-1814, October.
    14. Alvarez-Valdes, R. & Crespo, E. & Tamarit, J.M. & Villa, F., 2008. "GRASP and path relinking for project scheduling under partially renewable resources," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1153-1170, September.
    15. Xianzhao Zhang & Dachuan Xu & Donglei Du & Chenchen Wu, 2018. "Approximation algorithms for precedence-constrained identical machine scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 318-330, January.
    16. Perrone, G. & Roma, P. & Lo Nigro, G., 2010. "Designing multi-attribute auctions for engineering services procurement in new product development in the automotive context," International Journal of Production Economics, Elsevier, vol. 124(1), pages 20-31, March.
    17. Kaiyue Zheng & Laura A. Albert, 2019. "Interdiction models for delaying adversarial attacks against critical information technology infrastructure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 411-429, August.
    18. Mukesh Kumar Mehlawat & Nishtha Grover, 2018. "Intuitionistic fuzzy multi-criteria group decision making with an application to critical path selection," Annals of Operations Research, Springer, vol. 269(1), pages 505-520, October.
    19. Jungen, F. J. & Kowalczyk, W., 1995. "An intelligent interactive project management support system," European Journal of Operational Research, Elsevier, vol. 84(1), pages 60-81, July.
    20. Sayyid Ali Banihashemi & Mohammad Khalilzadeh & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2021. "Investigating the Environmental Impacts of Construction Projects in Time-Cost Trade-Off Project Scheduling Problems with CoCoSo Multi-Criteria Decision-Making Method," Sustainability, MDPI, vol. 13(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:59:y:2002:i:5:p:431-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.