IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v55y2001i4p329-340.html
   My bibliography  Save this article

Spatiotemporal chaos in spatially extended systems

Author

Listed:
  • Cai, David
  • McLaughlin, David W.
  • Shatah, Jalal

Abstract

To address finite-size effects in the use of the decay mutual information to characterize spatiotemporal chaotic dynamics, we modify the dispersion of the nonlinear Schrödinger equation to obtain a model system for which the number of unstable modes remains fixed while the domain size increases. Our numerical study of the model system clearly establishes that spatiotemporal chaos arises in the presence of only two unstable modes. In this spatially extended system, the spatiotemporal chaos is characterized by chaotic dynamics in time and by an exponential decay in space of mutual information, with the decay rate becoming system-size independent in the large system-size limit.

Suggested Citation

  • Cai, David & McLaughlin, David W. & Shatah, Jalal, 2001. "Spatiotemporal chaos in spatially extended systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(4), pages 329-340.
  • Handle: RePEc:eee:matcom:v:55:y:2001:i:4:p:329-340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475400002998
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korabel, Nickolay & Zaslavsky, George M., 2007. "Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 223-237.
    2. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:55:y:2001:i:4:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.