IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v48y1999i4p407-416.html
   My bibliography  Save this article

Estimating the Hurst parameter in fractional ARIMA(p,d,q) models via the quasi-likelihood method

Author

Listed:
  • Biondini, Riccardo
  • Lin, Yan-Xia

Abstract

This paper is concerned with R/S analysis given a fractional ARIMA(p,d,q) model with finite variance where the aim is to estimate the intensity of long-range dependence of the particular series. This is done through what is commonly referred to as the Hurst parameter (denoted by H). H is a measure of self-similarity of a given time series. The goal of this paper is to examine the effectiveness of applying the method of asymptotic quasi-likelihood to R/S analysis instead of the conventional method of least squares.

Suggested Citation

  • Biondini, Riccardo & Lin, Yan-Xia, 1999. "Estimating the Hurst parameter in fractional ARIMA(p,d,q) models via the quasi-likelihood method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 407-416.
  • Handle: RePEc:eee:matcom:v:48:y:1999:i:4:p:407-416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499000208
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    2. Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, University Library of Munich, Germany.
    3. Zeinali, Narges & Pourdarvish, Ahmad, 2022. "An entropy-based estimator of the Hurst exponent in fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    5. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    7. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    8. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    9. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    10. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    11. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
    12. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    13. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    14. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    15. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    16. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    17. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
    18. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    19. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    20. Rehim Kili, 2004. "On the long memory properties of emerging capital markets: evidence from Istanbul stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 915-922.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:48:y:1999:i:4:p:407-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.