IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v37y1994i1p73-92.html
   My bibliography  Save this article

Validation of numerical software results — Application to the computation of apparent heat release in direct-injection diesel engines

Author

Listed:
  • Guilain, S.
  • Vignes, J.

Abstract

Numerical simulation is used more and more for analyzing physical phenomena. Starting from a mathematical model of the phenomenon, the simulation consists in solving it on a computer, using numerical methods. Unfortunately results provided by the computer always contain errors resulting both from round-off error propagation caused by floating point arithmetic and from the uncertainties concerning the physical data of the model. Consequently, to conclude in the possible validity of the simulation, the results provided by the computer must previously be validated.

Suggested Citation

  • Guilain, S. & Vignes, J., 1994. "Validation of numerical software results — Application to the computation of apparent heat release in direct-injection diesel engines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 37(1), pages 73-92.
  • Handle: RePEc:eee:matcom:v:37:y:1994:i:1:p:73-92
    DOI: 10.1016/0378-4754(94)90060-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475494900604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(94)90060-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vignes, J., 1993. "A stochastic arithmetic for reliable scientific computation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(3), pages 233-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samad Noeiaghdam & Aliona Dreglea & Hüseyin Işık & Muhammad Suleman, 2021. "A Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    2. Samad Noeiaghdam & Sanda Micula & Juan J. Nieto, 2021. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    3. Albertsen, Niels Christian & Chesneaux, Jean-Marie & Christiansen, Søren & Wirgin, Armand, 1999. "Comparison of four software packages applied to a scattering problem1Professor Ralph E. Kleinman, University of Delaware, USA, in memoriam.1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(3), pages 307-317.
    4. Jézéquel, F. & Rico, F. & Chesneaux, J.-M. & Charikhi, M., 2006. "Reliable computation of a multiple integral involved in the neutron star theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(1), pages 44-61.
    5. Alt, R. & Lamotte, J.-L., 2001. "Experiments on the evaluation of functional ranges using a random interval arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(1), pages 17-34.
    6. Samad Noeiaghdam & Sanda Micula, 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection," Mathematics, MDPI, vol. 9(9), pages 1-24, May.
    7. Samad Noeiaghdam & Denis Sidorov & Abdul-Majid Wazwaz & Nikolai Sidorov & Valery Sizikov, 2021. "The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method," Mathematics, MDPI, vol. 9(3), pages 1-15, January.
    8. Samad Noeiaghdam & Denis Sidorov & Alyona Zamyshlyaeva & Aleksandr Tynda & Aliona Dreglea, 2020. "A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method," Mathematics, MDPI, vol. 9(1), pages 1-17, December.
    9. Samad Noeiaghdam & Sanda Micula, 2021. "A Novel Method for Solving Second Kind Volterra Integral Equations with Discontinuous Kernel," Mathematics, MDPI, vol. 9(17), pages 1-12, September.
    10. Salkuyeh, Davod Khojasteh & Toutounian, Faezeh & Yazdi, Hamed Shariat, 2008. "A procedure with stepsize control for solving n one-dimensional IVPs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(2), pages 167-176.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:37:y:1994:i:1:p:73-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.